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This book is dedicated to my wife without whom this
work could have been finished much earlier.

If anything can go wrong, it will.

If you change queues, the one you have left will start to move faster than the one
you are in now.

e Your queue always goes the slowest.

Whatever queue you join, no matter how short it looks, it will always take the
longest for you to get served.

( Murphy’ Laws on reliability and queueing )
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Preface

Modern information technologies require innovations that are based on modeling, ana-
lyzing, designing and finally implementing new systems. The whole developing process
assumes a well-organized team work of experts including engineers, computer scientists,
mathematicians, physicist just to mention some of them. Modern infocommunication
networks are one of the most complex systems where the reliability and efficiency of the
components play a very important role. For the better understanding of the dynamic
behavior of the involved processes one have to deal with constructions of mathematical
models which describe the stochastic service of randomly arriving requests. Queueing
Theory is one of the most commonly used mathematical tool for the performance evalu-
ation of such systems.

The aim of the book is to present the basic methods, approaches in a Markovian
level for the analysis of not too complicated systems. The main purpose is to understand
how models could be constructed and how to analyze them. It is assumed the reader has
been exposed to a first course in probability theory, however in the text I give a refresher
and state the most important principles I need later on. My intention is to show what is
behind the formulas and how we can derive formulas. It is also essential to know which
kind of questions are reasonable and then how to answer them.

My experience and advice are that if it is possible solve the same problem in different
ways and compare the results. Sometimes very nice closed-form, analytic solutions are
obtained but the main problem is that we cannot compute them for higher values of the
involved variables. In this case the algorithmic or asymptotic approaches could be very
useful. My intention is to find the balance between the mathematical and practitioner
needs. I feel that a satisfactory middle ground has been established for understanding
and applying these tools to practical systems. I hope that after understanding this book
the reader will be able to create his owns formulas if needed.

It should be underlined that most of the models are based on the assumption that the
involved random variables are exponentially distributed and independent of each other.
We must confess that this assumption is artificial since in practice the exponential distri-
bution is not so frequent. However, the mathematical models based on the memoryless
property of the exponential distribution greatly simplifies the solution methods resulting
in computable formulas. By using these relatively simple formulas one can easily foresee
the effect of a given parameter on the performance measure and hence the trends can be
forecast. Clearly, instead of the exponential distribution one can use other distributions
but in that case the mathematical models will be much more complicated. The analytic
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results can help us in validating the results obtained by stochastic simulation. This ap-
proach is quite general when analytic expressions cannot be expected. In this case not
only the model construction but also the statistical analysis of the output is important.

The primary purpose of the book is to show how to create simple models for practical
problems that is why the general theory of stochastic processes is omitted. It uses only
the most important concepts and sometimes states theorem without proofs, but each time
the related references are cited.

I must confess that the style of the following books greatly influenced me, even if
they are in different level and more comprehensive than this material: Allen [2], Jain [41],
Kleinrock [48], Kobayashi and Mark [51], Stewart [74], Tijms [91], Trivedi [94].

This book is intended not only for students of computer science, engineering, operation
research, mathematics but also those who study at business, management and planning
departments, too. It covers more than one semester and has been tested by graduate
students at Debrecen University over the years. It gives a very detailed analysis of the
involved queueing systems by giving density function, distribution function, generating
function, Laplace-transform, respectively. Furthermore, Java-applets are provided to cal-
culate the main performance measures immediately by using the pdf version of the book in
a WWW environment. Of course these applets can be run if one reads the printed version.

I have attempted to provide examples for the better understanding and a collection
of exercises with detailed solution helps the reader in deepening her/his knowledge. I
am convinced that the book covers the basic topics in stochastic modeling of practical
problems and it supports students in all over the world.

I am indebted to Professors Jozsef Biré and Zalan Heszberger for their review, com-
ments and suggestions which greatly improved the quality of the book. I am also very
grateful to Tamas Torok, Zoltan Nagy and Ferenc Veres for their help in editing. .

All comments and suggestions are welcome at:

sztrik.janos@inf.unideb.hu
http://irh.inf.unideb.hu/user/jsztrik

Debrecen, 2012.

Jdanos Sztrik



Part 1

Basic Queueing Theory






Chapter 1

Fundamental Concepts of Queueing
Theory

Queueing theory deals with one of the most unpleasant experiences of life, waiting. Queue-
ing is quite common in many fields, for example, in telephone exchange, in a supermarket,
at a petrol station, at computer systems, etc. I have mentioned the telephone exchange
first because the first problems of queueing theory was raised by calls and Erlang was
the first who treated congestion problems in the beginning of 20th century, see Erlang
21, 22).

His works inspired engineers, mathematicians to deal with queueing problems using
probabilistic methods. Queueing theory became a field of applied probability and many of
its results have been used in operations research, computer science, telecommunication,
traffic engineering, reliability theory, just to mention some. It should be emphasized that
is a living branch of science where the experts publish a lot of papers and books. The
easiest way is to verify this statement one should use the Google Scholar for queueing re-
lated items. A Queueing Theory Homepage has been created where readers are informed
about relevant sources, for example books, softwares, conferences, journals, etc. I highly
recommend to visit it at

http://web2.uwindsor.ca/math/hlynka/queue.html

There is only a few books and lectures notes published in Hungarian language, I would
mention the work of Gyorfi and Pali [33], Jereb and Telek [43], Kleinrock [48], Lakatos
and Szeidl | Telek [55] and Sztrik [84], [83] 82 [8T]. However, it should be noted that the
Hungarian engineers and mathematicians have effectively contributed to the research and
applications. First of all we have to mention Lajos Takacs who wrote his pioneer and fa-
mous book about queueing theory [88]. Other researchers are J. Tomko, M. Arato, L.
Gyorfi, A. Benczir, L. Lakatos, L. Szeidl, L. Jereb, M. Telek, J. Biro, T. Do, and J.
Sztrik. The Library of Faculty of Informatics, University of Debrecen, Hungary offer a
valuable collection of queueing and performance modeling related books in English, and
Russian, too. Please visit:

http://irh.inf.unideb.hu/user/jsztrik/education/05/3f.html

[ may draw your attention to the books of Takagi [85] [86] 87] where a rich collection of
references is provided.
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1.1 Performance Measures of Queueing Systems

To characterize a queueing system we have to identify the probabilistic properties of the
incoming flow of requests, service times and service disciplines. The arrival process can
be characterized by the distribution of the interarrival times of the customers, denoted
by A(t), that is

A(t) = P( interarrival time < t).

In queueing theory these interarrival times are usually assumed to be independent and
identically distributed random variables. The other random variable is the service time,
sometimes it is called service request, work. Its distribution function is denoted by B(z),
that is

B(z) = P( service time < x).

The service times, and interarrival times are commonly supposed to be independent
random variables.

The structure of service and service discipline tell us the number of servers,
the capacity of the system, that is the maximum number of customers staying in the
system including the ones being under service. The service discipline determines the
rule according to the next customer is selected. The most commonly used laws are

e FIFO - First In First Out: who comes earlier leaves earlier
e LIFO - Last Come First Out: who comes later leaves earlier
e RS - Random Service: the customer is selected randomly

e Priority.

The aim of all investigations in queueing theory is to get the main performance measures of
the system which are the probabilistic properties ( distribution function, density function,
mean, variance ) of the following random variables: number of customers in the system,
number of waiting customers, utilization of the server/s, response time of a customer,
waiting time of a customer, idle time of the server, busy time of a server. Of course, the
answers heavily depends on the assumptions concerning the distribution of interarrival
times, service times, number of servers, capacity and service discipline. It is quite rare,
except for elementary or Markovian systems, that the distributions can be computed.
Usually their mean or transforms can be calculated.

For simplicity consider first a single-server system Let p, called traffic intensity, be
defined as

mean service time

mean interarrival time
Assuming an infinity population system with arrival intensity A, which is reciprocal of
the mean interarrival time, and let the mean service denote by 1/u. Then we have

o = arrival intensity * mean service time = —.
L
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If o > 1 then the systems is overloaded since the requests arrive faster than as the are
served. It shows that more server are needed.

Let x(A) denote the characteristic function of event A, that is

1 ,if A occurs,
X(A) = .
0 ,if A does not ,

furthermore let N(¢) = 0 denote the event that at time 7" the server is idle, that is no
customer in the system. Then the utilization of the server during time 7' is defined

by
T

%/><<N<t> £0) dt

0

where T is a long interval of time. As T' — oo we get the utilization of the server
denoted by Uy and the following relations holds with probability 1

T

Ej
0

where F, is the steady-state probability that the server is idle £d, Ei denote the mean
busy period, mean idle period of the server, respectively.

This formula is a special case of the relationship valid for continuous-time Markov chains
and proved in Tomko [93].

Theorem 1 Let X(t) be an ergodic Markov chain, and A is a subset of its state space.
Then with probability 1

Thlﬂo%(/oTX(X( eAdt) ZP_—A)@

€A

where m(A) and m(A) denote the mean sojourn time of the chain in A and A during a
cycle,respectively. The ergodic ( stationary, steady-state ) distribution of X (t) is denoted
by P;.

In an m-server system the mean number of arrivals to a given server during time T
is A\T'/m given that the arrivals are uniformly distributed over the servers. Thus the
utilization of a given server is

A
Us = —.
mp
The other important measure of the system is the throughput of the system which
is defined as the mean number of requests serviced during a time unit. In an m-server

system the mean number of completed services is mou and thus

throughput = mUsu = .

13



However, if we consider now the customers for a tagged customer the waiting and
response times are more important than the measures defined above. Let us define by
W;,T; the waiting, response time of the jth customer, respectively. Clearly the waiting
time is the time a customer spends in the queue waiting for service, and response time is
the time a customer spends in the system, that is

Ty = W; +5j,

where S; denotes its service time. Of course, W; and T} are random variables and their
mean, denoted by W; and Tj, are appropriate for measuring the efficiency of the system.
It is not easy in general to obtain their distribution function.

Other characteristic of the system is the queue length, and the number of customers
in the system. Let the random variables Q(t), N(t) denote the number of customers in
the queue, in the system at time ¢, respectively. Clearly, in an m-server system we have

Q(t) = max{0, N(t) — m}.

The primary aim is to get their distributions, but it is not always possible, many times
we have only their mean values or their generating function.

1.2 Kendall’s Notation

Before starting the investigations of elementary queueing systems let us introduce a no-
tation originated by Kendall to describe a queueing system.
Let us denote a system by

A/B/m /K /n/D,

where
A: distribution function of the interarrival times,
B: distribution function of the service times,

number of servers,

e

>

capacity of the system, the maximum number of customers in the system including
the one being serviced,

n: population size, number of sources of customers,

D: service discipline.

Exponentially distributed random variables are notated by M, meaning Markovain or
memoryless.
Furthermore, if the population size and the capacity is infinite, the service discipline is
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FIFO, then they are omitted.

Hence M/M/1 denotes a system with Poisson arrivals, exponentially distributed service
times and a single server. M/G/m denotes an m-server system with Poisson arrivals
and generally distributed service times. M /M /r/K /n stands for a system where the cus-
tomers arrive from a finite-source with n elements where they stay for an exponentially
distributed time, the service times are exponentially distributed, the service is carried
out according to the request’s arrival by r severs, and the system capacity is K.

1.3 Basic Relations for Birth-Death Processes

Since birth-death processes play a very important role in modeling elementary queueing
systems let us consider some useful relationships for them. Clearly, arrivals mean birth
and services mean death.

As we have seen earlier the steady-state distribution for birth-death processes can be
obtained in a very nice closed-form, that is

Aot Al OO)\...)\Z._
(1.1) p="0""0p =12, Pyl=14 ) 2L
M1 g = M1

Let us consider the distributions at the moments of arrivals, departures, respectively,
because we shall use them later on.

Let N,, N; denote the state of the process at the instant of births, deaths, respectively,
and let Iy, = P(N, = k),Dr = P(Ny=k), k=0,1,2,... stand for their distributions.

By applying the Bayes’s theorem it is easy to see that

(1.2) [T = lim —=5 = == :
=03 oA +o(R) Py Y220 A P

Similarly
. (peprh+o(h)Peyr ppi Pep
(1.3) Dy, = lim == = == :
=0 33 (msh+o(R) Py 3200 il
. Ak
Since Py = P., k=0,1,..., thus
Hi+1
)\k:Pk;
14 D= =——=11 k=0,1,....
( ) k zzo /\zR k> s L9



In words, the above relation states that the steady-state distributions at the moments of
births and deaths are the same. It should be underlined, that it does not mean that it is
equal to the steady-state distribution at a random point as we will see later on.

Further essential observation is that in steady-state the mean birth rate is equal to the
mean death rate. This can be seen as follows

(1.5) A= Z NP = Zmﬂpzurl = Zﬂkpk =
i—0 =0 k=1

1.4 Queueing Softwares

To solve practical problems the first step is to identify the appropriate queueing system
and then to calculate the performance measures. Of course the level of modeling heavily
depends on the assumptions. It is recommended to start with a simple system and then
if the results do not fit to the problem continue with a more complicated one. Various
software packages help the interested readers in different level. The following links worths
a visit

http://web2.uwindsor.ca/math/hlynka/qsoft.html
For practical oriented teaching courses we also have developed a collection of Java-applets

calculating the performance measures not only for elementary but for more advanced
queueing systems. It is available at

http://irh.inf.unideb.hu/user/jsztrik/education/09/english/index.html
For simulation purposes I recommend
http://www.win.tue.nl/cow/Q2/

If the preprepared systems are not suitable for your problem then you have to create your
queueing system and then the creation starts and the primary aim of the present book
is to help this process.

For further readings the interested reader is referred to the following books: Allen [2],
Bose [9], Daigle [18], Gnedenko and Kovalenko [3I], Gnedenko, Belyayev and Solovyev
[29], Gross and Harris [32], Jain [41], Jereb and Telek [43], Kleinrock [4§], Kobayashi
[50, 51], Kulkarni [54], Nelson [59], Stewart [74], Sztrik [81], Tijms [91], Trivedi [94].
The present book has used some parts of Allen [2], Gross and Harris [32], Kleinrock [48],
Kobayashi [50], Sztrik [81], Tijms [91], Trivedi [94].
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Chapter 2

Infinite-Source Queueing Systems

Queueing systems can be classified according to the cardinality of their sources, namely
finite-source and infinite-source models. In finite-source models the arrival intensity of
the request depends on the state of the system which makes the calculations more com-
plicated. In the case of infinite-source models, the arrivals are independent of the number
of customers in the system resulting a mathematically tractable model. In queueing net-
works each node is a queueing system which can be connected to each other in various
way. The main aim of this chapter is to know how these nodes operate.

2.1 The M/M/1 Queue

An M/M/1 queueing system is the simplest non-trivial queue where the requests arrive
according to a Poisson process with rate A, that is the interarrival times are independent,
exponentially distributed random variables with parameter \. The service times are also
assumed to be independent and exponentially distributed with parameter p. Further-
more, all the involved random variables are supposed to be independent of each other.

Let N(t) denote the number of customers in the system at time ¢ and we shall say
that the system is at state k if N(t) = k. Since all the involved random variables are
exponentially distributed, consequently they have the memoryless property, N(t) is a
continuous-time Markov chain with state space 0,1, ---.

In the next step let us investigate the transition probabilities during time h. It is easy to
see that

Piri1(h) =(Ah +o(h)) (1 = (uh + o(h)) +
+ > (Ah+ o(h)* (uh + o(h)* ",
k :_0, 1,2,....

By using the independence assumption the first term is the probability that during A
one customer has arrived and no service has been finished. The summation term is the
probability that during h at least 2 customers has arrived and at the same time at least 1
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has been serviced. It is not difficult to verify the second term is o(h) due to the property
of the Poisson process. Thus

Pk7k+1(h) = M + O(h)

Similarly, the transition probability from state k into state k — 1 during h can be written
as

Prr—1(h) = (uh + o(h)) (1 — (Ah + o(h)) +
+ i (Ah A+ o(B)F (uh + o(h))"
= uih + o(h).
Furthermore, for non-neighboring states we have
Py ; = o(h), | k—j|>2.
In summary, the introduced random process N (t) is a birth-death process with rates
A = A, kE=0,1,2,..., pup=p, k=1,2,3...

That is all the birth rates are A, and all the death rates are p.
As we notated the system capacity is infinite and the service discipline is FIFO.

To get the steady-state distribution let us substitute these rates into formula (|1.1]) ob-
tained for general birth-death processes. Thus we obtain

L A\*
P=nh]]= _PO(M) . k>0
ZO

By using the normalization condition we can see that this geometric sum is convergent

iff A\/u <1 and
00 )\k -1 by
Py = 1—|—Z(—) =1—-—=1-0p
1 \M H

P, = (1 - 0)o", k=0,1,2, ...

where ¢ = % Thus

which is a modified geometric distribution with success parameter 1 — p.

In the following we calculate the the main performance measures of the system

e Mean number of customers in the system

[e.9]

N =) kP 1—@@2169'“

k=0
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Variance

_ 2 e _<Q>2: 0
(I-0? 1-0 \l-o (1-0)?

e Mean number of waiting customers, mean queue length

o0 00 0o 2
Q=) (k—1)P =Y kP,—Y B=N—(1-P)=N-p= 19_@_
k=1 k=1 =1
Variance
o) B 9 1 o
Var(@Q) =Sk~ 1P~ Q@ = W
k=1

o Server utilization \
U,=1—FP=—=o.
1

By using Theorem [1] it is easy to see that

where FE0 a is the mean busy period length of the server, % is the mean idle time of
the server. Since the server is idle until a new request arrives which is exponentially
distributed with parameter \. Hence

>l

1— 0=
0 B’

+

1
By

and thus



In the next few lines we show how this performance measure can be obtained in a
different way:.

To do so we need the following notations.

Let E(v4), E(vp) denote the mean number of customers that have arrived, departed
during the mean busy period of the server, respectively. Furthermore, let E(vg)
denote the mean number of customers that have arrived during a mean service
time. Clearly

E(vp) =E(d)u,

E(vs) =

)

= >

E(”A) = ]E((S))\a
E(va) + 1 = E(vp),

and thus after substitution we get

Consequently

Distribution of the response time of a customer

Before investigating the response we show that in any queueing system where the
arrivals are Poisson distributed

Pi(t) = 11(2),

where Py (t) denotes the probability that at time ¢ the system is a in state k, and
I1,(t) denotes the probability that an arriving customers find the system in state k
at time ¢. Let

A(t,t + At)

denote the event that an arrival occurs in the interval (¢,¢ + At). Then

(t) := lim P (N(t) = k|A(t, ¢ + At)),

At—0

Applying the definition of the conditional probability we have

PN =k, A(t t + Ab)
W) = i —— A
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I P (A(t,t + At)|N(t) = k)P (N(t) = k)

= 1m .

At—0 P (A(t,t + At))

However, in the case of a Poisson process event A(t,t + At) does not depends on

the number of customers in the system at time ¢ and even the time ¢ is irrespective
thus we obtain

P (A(t,t + At)|N(t) = k) = P (A(t, t + At)),
hence for birth-death processes we have

I(t) = P (N(t) = k).

That is the probability that an arriving customer find the system in state k is equal
to the probability that the system is in state k.

In stationary case applying formula ([1.2)) with substitutions \; = A, i=20,1,...
we have the same result.

If a customer arrives it finds the server idle with probability F, hence the waiting
time is 0. Assume, upon arrival a tagged customer, the system is in state n. This
means that the request has to wait until the residual service time of the customer
being serviced plus the service times of the customers in the queue. As we assumed
the service is carried out according to the arrivals of the requests. Since the ser-
vice times are exponentially distributed the remaining service time has the same
distribution as the original service time. Hence the waiting time of the tagged cus-
tomer is Erlang distributed with parameters (n, u) and the response time is Erlang
distributed with (n + 1, ). Just to remind you the density function of an Erlang
distribution with parameters (n, p) is

)nfl

) = ez

Hence applying the theorem of total probability for the density function of the
response time we have

fr(z) = Z(l - Q)Qn%li!)nue‘“ = u(l —p)e Z (‘Q’lg)n =

= u(1 — Q)e—u(l—g)ﬂﬁ_
Its distribution function is
Fr(z) =1 — e rli-oz,

That is the response time is exponentially distributed with parameter
p(l—0)=p—A

Hence the expectation and variance of the response time are

1 1 2

T = 0 —0) Var(T) = (m
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Furthermore . )
T= = = EO.
p(l—o) p—=2A

Distribution of the waiting time

Let fu (x) denote the density function of the waiting time. Similarly to the above
considerations for x > 0 we have

()" e — (nro)*
m@ﬂZE:&_Dme“QU—Qﬁﬂl—mWE:(H)e“:
n=1 k=0
= (1 - g)oue 170",
Thus
fw(0)=1—p, if x =0,
fw(x) = o(1 — g)pe 1= if 3 > (.
Hence

Fy(r)=1-p+0(1—e#1797) =1 — ger1-0),

The mean waiting time is
W = /xfw(x)dx =————=9pE6=N-.
I
0

Since T'=W + S, in addition W and S are independent we get

1 1
5 = Var(W)+ —

VCLT(T) == m Iuga

thus
1 1 2p — p? 2 0

R V) 7 R P R A e A T )

that is exactly E(TW?) — (EW)2
Notice that

2.1 AT =\ - = N.
21) P -
Furthermore

2
2 . 2 )\W — )\ = = .
(22) pl—0) 1-o0 <

Relations (2.1)), (2.2) are called Little formulas or Little theorem, or Little
law which remain valid under more general conditions.
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Let us examine the states of an M /M /1 system at the departure instants of the customers.
Our aim is to calculate the distribution of the departure times of the customers. As it
was proved in ([1.3)) at departures the distribution is

Ak Py
D= ———.
D YIPYZ
In the case of Poisson arrivals A\, = A,k =0,1,..., hence D, = P;.

Now we are able to calculate the Laplace-transform of the interdeparture time d. Condi-
tioning on the state of the server at the departure instants, by using the theorem of total
Laplace-transform we have

f 1
La(s) = o——+ (1 - ,
(s) Q/H—s ( Q))\+su+s

since if the server is idle for the next departure a request should arrive first. Hence

A+s)+ (I —0) A Ao+ As+ A — Ao
A+s)uts) (A +s)(uts)

La(s) = 1

AMs+p) A
A+s)(p+s) A+

which shows that the distribution is exponential with parameter A and not with y as one
might expect. The independence follows from the memoryless property of the exponential
distributions and from their independence. This means that the departure process is a
Poisson process with rate \.

This observation is very important to investigate tandem queues, that is when several
simple M/M/1 queueing systems as nodes are connected in serial to each other. Thus
at each node the arrival process is a Poisson process with parameter A and the nodes
operate independently of each other. Hence if the service times have parameter pu; at

A
the ith node then introducing traffic intensity p; = — all the performance measures for

a given node could be calculated. Consequently, the mean number of customers in tha
network is the sum of the mean number of customers in the nodes. Similarly, the mean
waiting and response times for the network can be calculated as the sum of the related
measures in the nodes.

Now, let us show how the density function d can be obtained directly without using tha
Laplace-transforms. By applying the theorem of total probability we have

- A ALy
— nr 1 — n T
fa(x) = ope™" +( @)<—A e )

— e M + w— )‘( )‘M -z )‘M e—,ux)

e R
P \p—A p— A
= e M £ NN — \eTHT = \e M
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Now let us consider an M/G/1 system and we are interested in under which service time
distribution the interdeparture time is exponentially distributed with parameter\. First
prove that the utilization of the system is Ug = o = AE(S). As it is understandable for
any stationary stable G/G/1 queueing system the mean number of departures during
the mean busy period length of the server is one more than the mean number of arrivals
during the mean busy period length of the server. That is

E(9) E(9)

S TE@

where E(7) denotes the mean interarrival times. Hence

E(r) + E(5) = E(é)g((;))
E(r)E(S) 1
B0 =gm w5 ~ BTy
where ¢ = %. Clearly
_EE) B
STEMED) B gD Tvg 5T

Thus the utilization for an M /G /1 system is p. It should be noted that an M/G/1 system
Dy = Py, that is why our question can be formulated as

ALH = eLs(s) + (1 = o)y Ls(s) = Ls(s) (@ + A(Al—;f)>
- CE: SAE;?; A= NE(S) _ ;oA ii@”,
thus 1
Ls(s) = 1+ sE(S)

which is the Laplace-transform of an exponential distribution with mean E(S) . In sum-
mary, only exponentially distributed service times assures that Poisson arrivals involves
Poisson departures with the same parameters.

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MM1/MM1.html

Example 1 Let us consider a small post office in a wvillage where on the average 70
customers arrive according to a Poisson process during a day. Let us assume that the
service times are exponentially distributed with rate 10 clients per hour and the office
operates 10 hours daily. Find the mean queue length, and the probability that the number
of waiting customer is greater than 2. What is the mean waiting time and the probability
that the waiting time is greater than 20 minutes ¢
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Solution:
Let the time unit be an hour. Then A =7, =10, p = 1—70

v__ P _T
1—p 3
_ 7 7T 70—21 49
:N— = - — — = [ —
@ P=37 10 30 30
=1-14+p—(1—=p)p+p°+p*)=p"=0343-0.7 = 0.2401
_ N 7 7
W:;—3 10—%hour ~ 14 minutes

1
=1-—Fy (-) — 0.7 10503 _ 7.1 =0.257

2.2 The M/M/1 Queue with Balking Customers

Let us consider a modification of an M /M /1 system in which customers are discouraged
when more and more requests are present at their arrivals. Let us denote by by the
probability that a customers joints to the systems provided there are k£ customers in the
system at the moment of his arrival.

It is easy to see, that the number of customers in the system is a birth-death process
with birth rates

MNe=A-by, k=0,1,...

Clearly, there are various candidates for b, but we have to find such probabilities which
result not too complicated formulas for the main performance measures. Keeping in mind
this criteria let us consider the following

Thus
P, = Z'PO, E=01,...,

and then using the normalization condition we get
pr o
Pk = He p,
The stability condition is E p < oo, that is we do not need the condition p < 1 as in an
M/M/1 system.
Notice that the number of customers follows a Poisson law with parameter p and we can

k=0,1,...

expect that the performnace measures can be obtained in a simple way.

Performance measures
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hence

= (N)—2N+U5:p+p —2,0+U5:p —p+1—e‘p.
Thus
Var(Q) = E(QY) — (B(Q)! = p* —p+1—e" — (p+e7 — 1)
=pP—ptl—e?—p*—e—1-20"+2p+ 2"
=p—e P teP 20 =p—ecPle?+2p—1).
To get the distribution of the response and waiting times we have to know the

distribution of the system at the instant when an arriving customer joins to the
system.

By applying the Bayes’s rule it is not difficult to see that

A p -

Hk_ k1 Pk _ (k+) ep — Pk+1
) \ 00 1—er
DI JELEE
i:OZ_I—1 =0

Notice, that this time
Iy # P.

Let us first determine T and then W.

By the law of total expectations we have

— =k+1 Il (E+1)P 1 —
T = +Hk:—z(+)_k+1: Y A —
— pi 1—er p(l—e") p(l—er)
- _ P _
W Lt l<p+e 1)
poop\ l—e



As we have proved in formula ({1.5)

= NP = S b= S = (1 — o),
k=0 k=1 k=1

thus

— — _ p P
NT=ul—e?).—>" _—H_N
p(l —e™) i—en =N

p+e?f—1 B _
Wiy P oL=0

which is the Little formula for this system.

AW =p(l—e").

e To find the distribution of 7" and W we have to use the same approach as we did
earlier, namely

k+1

e o Mp)terp e’
o= 3ty o= 3 U

e SN (pap)®
I—e? &kl + DI

which is difficult to calculate. We have the same problems with fy (), too.

However, the Laplace-transforms Ly (s) and Ly (s) can be obtained and the hence
the higher moments can be derived.

Namely
0o 00 I k41 (z’”ll)' —p
Lr(s) = Ly(s|k)I; = s
o) = bt =3 () T2
—p o] k+1 p
el () s ).
1—er p+ s (k+1)! 1—e>r

e P pp

Li(s) = 7= €2 (nplin+ )7
e’ p P
L (0) = Pl = .
r0) =15 pooop(l—er)
Hence
= P
T —
p(l—er)’



as we have obtained earlier. W can be verified similarly.

To get Var(T) and Var(W) we can use the Laplace-transform method. As we have
seen

1—er
Thus
/ e’ 2
Li(s) = 1 e (“DA e+ ),
therefore
" e’ 2 _o\2 3 X
Ly (s) = 7= (€77 (FDMu+)72)" + 27+ ) o7 )
Hence

—P 22 1 p*+2
L7(0) = ‘ e (L) L) = 20 + P
1—er 1 2 2 1—er

Consequently

ot = 5 22 (aten)

w1 —er 1—e»
_(pPH20)(L—e?)—p*  pP+2p—pe” —2pe " —p?
2 (1—er)? 2 (1—er)?
_2p—p’e " —2pe™" _p(2—(p+2)e”)
2 (1—er) p2 (1 —ee)?

However, W and T can be considered as a random sum, too. That is

Var(W) = E(Na)% + Var(N,) (%) — LE(N) + Var(V)).

2
kP,
Z kT, = Z . _’“e“p
= - _1€_p Z (k+1)Pq — Z Pk+1>
k=0

k=0
1

= - (p—l—e_p—l).

Since



first we have to calculate E(N?), that is
- Pk 1
B VST o CRL ST

_ ! i((k+1)2—2k—1)P]€+1

1—e"
k=0
1 o0 o o
S Z(Hlypkﬂ_2kak+l_zpkﬂ>
€ k=0 k=0 k=0
1 _ _
- 1—e» (p+p2—2(p+e p_1>_(1_6 p))
1 _
T 1_e (p2_'0_€ P_|_1)
Therefore
Var(N,) = L (PP—p—er+1) - ! (p+e?—1) 2
Yo l—er 1—er
1 2 2
() (e - e 1)
1 2
— (1 —p) (IOQ_p_e_P+1_p26—P+pe—P+€—20_e—P
—e
—pP—e —1—2pe " +2p—2e")
_p—e (PP +p)
(1 —er)?
Finally
1\°( 1 _ p—e’(p*+p)
vartn = (5) (=tr+ -0+ 125
1 _ _ _
= m((ﬂJre P =1l —e ) +p—e(p*+p)).
Thus
1
Var(T) = Var(W) + 2
1 2
Var(T) = (m) (p+e =11 —eP)+p—e (P’ +p) +(1—e")?)
_(A—e?)pter—1+1—eP)+p—e(p’+p)
(u(l—er))?
_ 2p—2peTP — pPe P
(p(l —er)?

which is the same we have obtained earlier.
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2.3 Priority M/M/1 Queues

In the following let us consider an M /M /1 systems with priorities. This means that we
have two classes of customers. Each type of requests arrive according to a Poisson process
with parameter A\;, and Ay, respectively and the processes are supposed to be independent
of each other. The service times for each class are assumed to be exponentially distributed
with parameter pu. The system is stable if

p1+p2 <1,

where p; = \;/p, i =1,2.
Let us assume that class 1 has priority over class 2. This section is devoted to the investi-
gation of preemptive and non-preemptive systems and some mean values are calculated.

Preemptive Priority

According to the discipline the service of a customer belonging to class 2 is never carried
out if there is customer belonging to class 1 in the system. In other words it means that
class 1 preempts class 2 that is if a class 2 customer is under service when a class 1 request
arrives the service stops and the service of class 1 request starts. The interrupted service
is continued only if there is no class 1 customer in the system.

Let N; denote the number of class ¢ customers in the system and let T; stand for the
response time of class i requests. Our aim is to calculate E(N;) and E(T;) for i = 1,2.
Since type 1 always preempts type 2 the service of class 1 customers is independent of
the number of class 2 customers. Thus we have

1/p P1
2.3 E(T)) = ——, E(N;) = .
(23) =2 B = 2
Since for all customers the service time is exponentially distributed with the same pa-
rameter, the number of customers does not depends on the order of service. Hence for
the total number of customers in an M/M/1 we get

p1+ P2
2.4 E(N) + E(N,) = L P2
(2.4) () + (V) = 202
and then inserting (2.3]) we obtain
pP1L+ P2 P1 P2

E(Ny) =

l—pi—ps 1—=pi (I—=p)(1—pi—po)’

and using the Little’s law we have

_E(V:) 1/p
) = T T —p)

Example 2 Let us compare what is the difference if preemptive priority discipline is ap-
plied instead of FIFO.
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Let A\ =0.5, Ay =0.25 and g = 1. In FIFO case we get
E(T)=4.0, E(W)=3.0, E(N)=3.0

and in priority case we obtain

Non-preemptive Priority

The only difference between the two disciplines is that in the case the arrival of a class
1 customer does not interrupt the service of type 2 request. That is why sometimes this
discipline is call HOL ( Head Of the Line ). Of course after finishing the service of class
1 starts.

By using the law of total expectations the mean response time for class 1 can be obtained
as

1 1 1

The last term shows the situation when an arriving class 1 customer find the server
busy servicing a class 2 customer. Since the service time is exponentially distributed the
residual service time has the same distribution as the original one. Furthermore, because
of the Poisson arrivals the distribution at arrival moments is the same as at random
moments, that is the probability that the server is busy with class 2 customer is p,. By
using the Little’s law

E(Ny) = ME(TY),

after substitution we get

To get the means for class 2 the same procedure can be performed as in the previous
case. That is using ([2.4)) after substitution we obtain

~ (A =pi(I = p1—p2))p2
E(N) = (L=p1)(1 = p1 —p2)

and then applying the Little’s law we have

_A=p(A=p1=p2))/ 1
ET) = 1—p)A—pr—p2)
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Example 3 Now let us compare the difference between the two priority disciplines.
Let A\ = 0.5, Ay = 0.25 and p = 1, then

Of course knowing the mean response time and mean number of customers in the system
the mean waiting time and the mean number of waiting customers can be obtained in
the usual way.

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcPrio/MMcPrio.html

http://www.win.tue.nl/cow/Q2/

2.4 The M/M/1/K Queue, Systems with Finite Capac-
ity

Let K be the capacity of an M /M /1 system, that is the maximum number of customers in
the system including the one under service. It is easy to see that the nu,ber of customers
in the systems is a birth-death process with rates A\, = X\, k =0,..., K — 1 és ux = u,
k=1,..., K. For the steady-state distribution we have

Pk_ Kp ) ]{?ZO, 7K7
2.7
1=0
that is
1
1 Kl p=1
S Uikt p#t
=0

It sholud be noted that the system is stable for any p > 0 when K is fixed. However, if
K — oo the the stability condition is p < 1 since the distribution of M /M /1/K converges

to the distribution of M/M/1.
It can be verified analytically since p% — 0 then Py — 1 — p.

Similarly to an M /M /1 systems after reasonable modifications the performance measures
can be computed as

[ J
Us=1-F,
1 Us
E(5) = ~
Q Al —Usg



K K
N = Z kp*Py = pPy Z kph1
k=1

k=1

K ! / !

1_pK p_pK+1

=pPy (> _p"| =pR (p )IPP (—

0<k1 > 0 1_p 0 1_p

= (L= @+ D) (A= p) = ") - (1p—P0p)2

:pPO(l_(K+1)pK_P+(K+1)pK+1+p—pK+1)
(1—=p)?

_ pPo (1 — (K + 1)pK_|_KpK+1)

(1—p)?
P (1— (K +1)p" + Kp~th)
(L—p)(1—p~th

e To obtain the distribution of the response and waiting time we have to know the

distribution of the system at the moment when the tagged customer enters into
to system. It should be underlined that the customer should enter into the system
and it is not the same as an arriving customer. An arriving customer can join the
system or can be lost because the system is full. By using the Bayes’ theorem it is
easy to see that

AP, P,
h= 5 == p
>
=0

Similarly to the investigations we carried out in an M/M/1 system the mean and
the density function of the response time can be obtained by the help of the law of
total means and law of total probability, respectively.

For the expectation we have

. K*1k+1H k41 pR
p— k pr— —
—o M o M 1— DB
K-1 -
1 N
= k+1)P.. =



Consequently

1 N 1
W=T-—=—" — ~,
po A1=Pg) p

We would like to show that the Little’s law is valid in this case and the same time
we can check the correctness of the formula.

It can easily be seen that the average arrival rate into the system is A = A\(1 — Py)
and thus

— N _
AT=XN1—-—Pg)— = N.
T
Similarly
- — N 1y — A
AW =X ——)=N--
(/\(1—PK) p 1t
=N-p(l—-Pg)=N-Us=0Q,
since

Now let us find the density function of the response and waiting times
By using the theorem of total probability we have

K-1
- (po)* . B
fT('I)_ZN k‘ 6:“' 1_PK7
k=0

and thus for the distribution function we get

K—1 z
)k P

! —
=\ 1= Py
K— k ;

— . 1 — Z (lux)le—ua: Pk
AT 1— Py
k=0 1=0

K-1 k i
‘ il 1— Py’

Thes formulas are more complicated due to the finite summation as in the case of
an M /M /1 system, but it is not difficult to see that in the limiting case as K — oo
we have

fr(z) = p(l — p)e =02,
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For the density and distribution function of the waiting time we obtain

Jwl0) =5 —P(}DK
K-1 _
el =3 e = Y.
A —P(}DK +sz <1 B k; (M;':)Z _W) 1_PkPK
—1 _lg (jié (’ﬁ)ie_“x) - f];K'

These formulas can be calculated very easily by a computer.

As we can see the probability Pk plays an important role in the calculations.
Notice that it is exactly the probability that an arriving customer find the system
full that is it lost. It is called blocking or lost probability and denoted by Pg.
Its correctness can be proved by the help of the Bayes’s rule, namely

AP
Py = K _ ppg.

K
D AP
k=0

If we would like to show the dependence on K and p it can be denoted by

oK
>0
k=0
Notice that
S o T pPe(K —1,p)
pr+pp
k=0

Starting with the initial value Pg(1,p) = % the probability of loss can be com-
)

puted recursively. It is obvious that this sequence tends to 0 as p < 1. Consequently
by using the recursion we can always find an K-t, for which

Py(K, p) < P*,

where P* is a predefined limit value for the probability of loss.

To find the value of K without recursion we have to solve the inequality

pH(1—p)

e < P*
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which is more complicated task.

Alternatively can can find an approximation method, too. Use the distribution of
an M/M/1 system and find the probability that in the system there are at least K
customers. It is easy to see that

Py(K,p) = K+1 <Z,0 (L=p)=p",

and thus if
Pt < P,
then Pj(K, p) < P*. That is

Klnp <InP*
In P*
Inp

Now let us turn our attention to the Laplace-transform of the response and wait-
ing times. First let us compute it for the response time. Similarly to the previous
arguments we have

K-1 k+1 k
p p"Fo
Lo(s) =
r(s) kz:% (ﬂ+s) 1— Py

P K l
:—02( up )
p(1 = P) = \p+s

The Laplace-transform of the waiting time can be obtained as

<« » \' P
0
Lw<s>:z(ﬂ+s) i Y

k=0

K-1
1__F%'k20 <A6+'S>

K
(2
f% <M+s)
1—Px 1-2

pts

g WEe <1 N (ws)K)

1— Pk w—A+s

—_

Y
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which also follows from relation

1
p+s

LT(S) = Lw(s) .

By the help of the Laplace-transforms the higher moments of the involved random
variables can be computed, too.

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MM1K/MM1K.html

2.5 The M/M/oco Queue

Similarly to the previous systems it is easy to see that the number of customers in the
system, that is the process (N (t),¢ > 0) is a birth-death process with rates

A=A, k=0,1,...
e =kp, k=1,2,....

Hence the steady-state distribution can be obtained as

Qk 1 - Qk
— = -1 __ = p0
Pk—k!Po, where Py~ = ] =e?,
k=0
That is
k
_ 9
Pk—k'e y

showing that N follows a Poisson law with parameter p.

It is easy to see that the performance measures can be computed as

1
E 1 —ee 11—
U, =1—ee, B0 _ e_eg , E(,)=~—.

. _ — 1 — .
NZQ) A:)H TZ_) W = ) F:Na ﬁ:_l’b
Or

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMinf/MMinf .html
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2.6 The M/M/n/n Queue, Erlang-Loss System

This system is the oldest and thus the most famous system in queueing theory. The ori-
gin of the traffic theory or congestion theory started by the investigation of this system
and Erlang was the first who obtained his well-reputed formulas, see for example Erlang
[211, 22].

By assumptions customers arrive according to a Poisson process and the service times
are exponentially distributed. However, if n servers all busy when a new customer arrives
it will be lost because the system is full. The most important question is what proportion
of the customers is lost.

The process (N (t),t > 0) is said to be in state k if k servers are busy, which is the same as
k customers are in the system. It is easy to see that (N(t),¢ > 0)is a birth-death process

with rates
- {)\, if k < n,

0, ifk>n,

e =kp, k=12 ..n.

Clearly the steady-state distribution exists since the process has a finite state space. The
stationary distribution can be obtained as

AN
Pk: PO(;)E ,1fk:§n,

0 it k> 0.

Due to the normalizing condition we have

and thus the distribution is

-~
k!
=0

=

which was introduced by Erlang and it is referred to as Erlang’s B-formula, or loss
formula and generally denoted by B(n, A/u).
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By using the Bayes’s rule it is easy to see that P, is the probability that an arriving
customer is lost. For moderate n the probability I can easily be computed. For large n

and small p Py = e ¢, and thus

k
~ 2 o
Pkwkle s

that is the Poisson distribution. For large n and large o

2%7&69.

However, in this case the central limit theorem can be used, since the denominator is the
sum of the first (n+ 1) terms of a Poisson distribution with mean p. Thus by the central
limit theorem this Poisson distribution can be approximated by a normal law with mean
o0 and variance /¢ that is

B(s) = B(s = 1/y/D) _, _ P(s=1/0)

P, ~ N [ :

D(s) ®(s)
where
5o~ [ et
s) = e 2dx
V2T ’
and
n—l—%—

i B(P"’lll
B(n,p) = =" i inn : n—1
p pFoopop
20 2at e
i=0 i=0
_ _EB(n—-1p)  pB(n-1p)
14+ 2B(n—1,p) n+pBn—1,p)

Using B(1,p) = 1 i P as an initial value the probabilities B(n, p) can be computed for

any n. It is important since the direct calculation can cause a problem due to the value
of the factorial.

For example for n = 1000, p = 1000 the exact formula cannot be computed but the ap-
proximation and the recursion gives the value 0.024.

Due to the great importance of B(n,p) in practical problems so-called calculators have
been developed which can be found at

http://www.erlang.com/calculator/
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To compare the approximations and the exact values we also have developed our own
Java script which can be used at

http://jani.uw.hu/erlang/erlang.html

Now determine the main performance measures of this M /M /n/n system

e Mean number of customers in the systems, mean number of busy servers
N=n=) jP= Z] PO—QZ Po—Ql—P)
4=0 '

thus the mean number of requests for a given server is

0
=(1-=P,).
21— p)
e Utilization of a server
As we have seen
U-Sip_7
n n
=1
This case
U,=2(1-p,)
n

e The mean idle period for a given server

By applying the well-known relation

1
P(the server is idle ) = = /n ,
e+1/p
where € is the mean idle time of the server. Thus
1
2 _py= 1
n e+1/p
hence
_ n 1
= ——— — —.
e The mean busy period of the system
Clearly
Eé
U =1—-Py = ———,
* T 1 RS,
thus no
g
1- PO =1 !




Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcc/MMcc.html

Example 4 In busy parking lot cars arrive according to a Poisson process one in 20
seconds and stay there in the average of 10 minutes.
How many parking places are required if the probability of a loss is no to exceed 1% ?

Solution: T
p=—=-=230,F,=0.01
B3
Following a normal approximation
_ nti—p\ g (3P
P00l I G R v,
" R ntg—p ntg—p
¢ (T) (D< VP )
Thus

It is not difficult to verify by using the Table for the standard normal distribution that
n = 41.

Thus the approximation value of Py is 0.009917321712214377,
and the exact value is 0.01043318100246811.

Example 5 A telephone exchange consists of 50 lines and calls arrive according to a
Poisson process, the mean interarrival time 1s 10 minutes. The mean service time 15 5
minutes.

Find the main performance measures.

Solution:

Using Poisson approximation where p = ﬁ =0.5
P5o = 0.00000, event for n =6
Ps = 0,00001. This means that a call is almost never lost.
Mean number of busy lines can be obtain as

n=p(l-P,)=p=05,

The utilization of a line is

-1
0;5:5><10 _ 102
50 5 x 10

The utilization of the system is
U, =1-0.606 = 0.394
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The mean busy period of the system can be obtained as

(1-PR) 0394  0.394
(AP))  2x0606 1.212

Eo, = = (.32 minutes

Mean idle period of a line is

_ n p 50 0,5 1 .
=t P Y 95~ = 2475 minut
“TXNI-P) X 21-0) 2 1 e

Heterogeneous Servers

In the case of an M/ M /n/n system the service time distribution depends on the index
of the server. That is the service time is exponentially distributed with parameter p; for
server i. An arriving customer choose randomly among the idle servers, that is each idle
server is chosen with the same probability. Since the servers are heterogeneous it is not
enough to to the number of busy servers but we have to identify them by their index. It
means that we have to deal with general Markov-processes.

Let (i1,...,1;) denote the indexes of the busy servers, which are the combinations of n
objects taken k at a time without replacement. Thus the state space of the Markov-chain
is the set of these combinations, that is (0, (i1,...,ix) € Cp k=1,...,n).

Let us denote by

Py = P(0),
P(Zl,,Zk):P((Zl,,Zk)),(ll,,lk) GC,?, ]ﬂ:l,...,n

the steady-state distribution of the chain which exists since the chain has a finite state
space and it is irreducible. The set of steady-state balance equations can be written as

(2.5) AP =Y uiP(j)
j=1
k \ k
()\‘i‘Z/,LZJ)P(Zl,,’Lk) = mzP(ilw"?ij*l?ijJrl?'"77’-]6)
(2.6) = =

+ Z M]P(Z/17>Z;m]/)

L e,

(2.7) (ZM)P(L...,W,) =AY P(1,...,j—1j+1,...,n)

=1
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where (7},...,4,j") denotes the ordered set iy,...,i,J, i—1 and i, are not defined.
Despite of the large number of unknowns, which is 2", the solution is quite simple, namely

(2.8) Pliy, ... i) = (n—k‘)!HQijC

A
where o = —, j=1,...,n, Fy=nlC, which can be determined by the help of the
normalizing condition

3

Let us check the first equation ([2.5)). By substitution we have
an!C = Z,u] (n—1)IC =nlXC.

Lets us check now the third equation ([2.7)

S Ak

(ZM) = C AZ %\"‘1-(7 :m-)\-riﬂn(jzn;/ij)o

Finally let us check the most complicated one, the second set of equations ([2.6)), namely

k k
CEDIIAICEION | Fore
j=1 j=1

i i My oo g, Jg
k

A AEC Ak

— -k Y NS (k- ¢
j=1 Hiy - Hiy, Goi1yin Mgy = oo iy,
A A
_ (n—k‘)'(Zuij> A k). ,
My My, My My,

which shows the equality.
Thus the usual performance measures can be obtained as
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e the utilization of the jth server U; can be calculated as

Up=> > Plis,....ix),

k=1 je(il,...,ik)

and thus .

v
T+ E(ey)

where E(e;) is the mean idle period of the jth server. Hence
11-0U;

E(e;) =
(ej) 'u] U]

o N = Z?:l U;

e The probability of loss is Pg = P(1,...,n).

It should be noted that in this case the following relation also holds

)\(1 — PB) == Z Uj,u]-.
j=1

In homogeneous case, that is when p; = 1,7 = 1,...,n, after substitution we have
n k o o %IT
(il,...,ik)ec,? j=1 71

that is it reduces to the Erlang’s formula derived earlier.

It should be noted that these formulas remains valid under generally distributed service
times with finite means with p; = AE(S;). In other words the Erlang’s loss formula is
robust to the distribution of the service time, it does not depend on the distribution itself

but only on its mean.

2.7 The M/M/n Queue

It is a variation of the classical queue assuming that the service is provided by n servers
operating independently of each other. This modification is natural since if the mean
arrival rate is greater than the service rate the system will not be stable, that is why
the number of servers should be increased. However, in this situation we have parallel

services and we are interested in the distribution of first service completion.
That is why we need the following observation.
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Let X; be exponentially distributed random variables with parameter p;, (i = 1,2,...,r)
and denote by Y their minimum. It is not difficult to see that Y is also exponentially

",
distributed with parameter ) p; since
i=1

PY<z)=1-PY>z)=1-PX; >z, i=1,.,r) =

i=1
Similarly to the earlier investigations, it can easily be verified that the number of cus-
tomers in the system is a birth-death process with the following transition probabilities

Prr-1(h) = (1 = (Ah + o(h))) (ueh + o(h)) + o(h) = ph + o(h),
Pig1(h) = (A +0(h)) (1 = (uxh + o(h))) + o(h) = Ah + o(h),

where

kp -, for 0 <k <n,
pe = min(kp, np) =
nu , forn < k.
It is understandable that the stability condition is A/nu < 1.

To obtain the distribution P, we have to distinguish two cases according to as u depends
on k. Thus if k < n, then we get

k—1 k
A A\ 1
P, = F =F(-) —.
’ “H (i + Dp O(u> k!
Similarly, if & > n, then we have
n—1 k—1 k
A A A 1
Po=nh]] - —=PR(=) =
Pl (1+1u i U i) nlnk—n
In summary
k
Po%r , for k <n,
P, =
k., n
0 T,L , for k > n,
n!
where \
a=—= P < 1.
ng o n

This a is exactly the utilization of a given server . Furthermore

n—1 00 k -1
_ p 1
Po—(l—l-kZH‘Fk lnk—n> ,
=1

| AS)

3
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and thus

n—1 pk pn 1 -1
P = LRI .
0 ( k! + nll— a)

k=0
Since the arrivals follow a Poisson law the the distribution of the system at arrival instants
equals to the distribution at random moments, hence the probability that an arriving
customer has to wait is

oo o0
P(waiting) = % _ P, Z ) nk .
k=n k=n

that is it can be written as

pro1 "
[ " n
11— s
P(waiting) = — nl-a = — : C(n, p)
=Y I
El' " nll—a k! nl(n—p)
k=0 k=0

This probability is frequently used in different practical problems; for example in tele-
phone systems, call centers, just to mention some of them. It is also a very famous formula
which is referred to as Erlang’s C formula,or Erlang’s delay formula and it is de-
noted by C'(n, \/ ).

The main performance measures of the systems can be obtained as follows

e For the mean queue length we have
0o (A) n+j

Q= Z _nPk—Z]Pn-i—J_Z]n'n] Py =

= G (A)” “dod () a4
R ) i D D

P_C(n,p).

n! (1—a)2:n—,0

e For the mean number of busy servers we obtain

k=0 k=n 0
n—2 n—1 n—1
P P P 1
~kl (n-1! (n=1!'\1-a
n—1 5
o1 1
=P %er—, 0o=p—Fy=p
— n'l—a 0



e For the mean number of customers in the system we get

n

00 1 00 [e's]
k=0 k=0 k=n k=n
P
=p+ C(n, p),
n—p

which is understandable since a customer is either in the queue or in service. Let
us denote by S-gal the mean number of idle servers. Then it is easy to see that

3|
I

N
|

W
I
3
|
= > U

thus

N=n-S

_I_
O

S

hence

0l

Nen-=

Q)

e Distribution of the waiting time

An arriving customer has to wait if at his arrival the number of customers in the
system is at least n. In this case the time while a customer is serviced is exponentially
distributed with parameter nu, consequently if there n + j customers in the system
the waiting time is Erlang distributed with parameters (j + 1, nu). By applying the
theorem of total probability for the density function of the waiting time we have

a ) J
fw(@) = 37 Py (npy 1 e,

, 7

Jj=0

Substituting the distribution we get

o) = 3 P e
= . !
_ F (ﬁ)nmw_n,m f: (anpz)’

| 1
n! = 7

A n
= QPonue(
n!
_ (ﬁ np —np(
= ———Fonpe
n!

np—A\)x

1—a)x

A\
_ (ﬁ) PO 1 nu(l . a>e—n,u,(l—a)z
n! 1—a

= P(waiting)nu(l — a)e "1-2,
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Hence for the complement of the distribution function we obtain

P(W >z) = /fw(u)du — P(waiting)e "*1-o)

— C’(n, ,0) e Hn—p)z
Therefore the distribution function can be written as
Fy(z) = 1 — P(waiting) + P(waiting) (1 — e "(1-9)")
=1- P(Waiting)e_””(l_“)“” =1—-C(n,p)- e~ Hn—p)z
Consequently the mean waiting time can be calculated as
i ()" 1 1

W = /xfw(x)dx = Po(l )t = = p>C’(n,p).

0

e Distribution of the response time

The service immediately starts if at arrival the number of customer in the system
is than n. However, if the arriving customer has to wait then the response time is
the sum of this waiting and service times. By applying the law of total probability
for the density function of the response time we get

fr(x) = P(no waiting)ue ** + fu1s(x)

As we have proved

fw(z) = P(waiting)e ™1 =9%n (1 — a).

Thus .
fwis(z) = /fw(x),u@”(zx)dx =
0
= P(waiting)nu(l —a)u / el o—n(z=a) gy —
0
= p_”PO—l nu(l — a)ue‘z“/e_“(”_l_k/“)mda: =
n!" " (1—a)
0
= _npon,u_ 1 e Mz (1 _ e—u(n—l—/\/u)Z) )
n! n—1-=Xu
Therefore

Jr(z) = (1 - (2)71%) b
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+@nw Pt e (1 emin=1-Nme) —
n! n—1—X\p

o 2)" R )" 1 —p(n—1—\/ )z
=pe” (1_71!{1—@)—'— 2! nPOn—l—)\/,u(l_eu ) ) =

e (14 () "Po 1= (n—\p)erm=1=Nua
- nl(1—a) n—1—\pu :

Consequently for the complement of the distribution function of the response time
we have

P(T > x) = / fr(y)dy =

_ /,ue_“y + (ﬁ)"po 1 e ™M —,u(n— )\/me—u(n—k/u)y dy =
nl(l—a)n—1—X\p

T

A\ " 1
_ —hx 2) P —pr _ —p(n=A/p)z _
() P ¢ )

A" —pun—1=-X/p)x
— (u) Py 1 — e /1) |
nl(l—a) n—1-—Xpu

Thus the distribution function can be written as
Fr(z)=1—-P(T > x).

In addition for the mean response time we obtain

1(ﬁ)"P I R

1
u o onp nl 0(1—@)2 1

Tz]lh@ﬂx:

as it was expected.

In stationary case the mean number of arriving customer should be equal to the
mean number of departing customers, so the mean number of customer in the system
is equal to the mumber of customers arrived during a mean response time. That is

N =N=Q+m,

in addition
NI @
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These are the Little’s formulas, that can be proved by simple calculations. As we
have seen

N = P,
P — a2
Since N
— 1 10 1
T - - - 0 )
w o np n! T (1—a)?
thus \
_ pn a
N = —+ —
TRy
that is
N = \T,
because — = p.
14
Furthermore
Q =W,
since
n=p

Qverall utilization of the servers can be obtained as

The utilization of a single server is

—

k‘ o0
U=)» -P P, =

El 3
I
3|3
I
I~

Hence the overall utilization can be written as

U,=nU; =n.

The mean busy period of the system can be computed as

The system is said to be idle if the is no customer in the system, otherwise the
system is busy. Let E¢, denote the mean busy period of the system. Then the
utilization of the system is

B,
U =1-P=+—"—,
° " 1 Es,
thus P
ES, = —2.
APy

If the individual servers are considered then we assume that a given server becomes
busy earlier if it became idle earlier. Hence if j < n customers are in the system
then the number of idle servers is n — j.
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Let as consider a given server. On the condition that at the instant when it became
idle the number of customers in the system was j its mean idle time is

__n—j
Gj = )\ .
The probability of this situation is
P.
a; = n—lj .
2P
i=0

Then applying the law of total expectations for its mean idle period we have

n—1 n—1 . =
_ _ (n—Jj)b S
€= Z a;€; = Z n—1 = ’
5=0 §=0 AYico B AP(e)
where P(e) denotes the probability that an arriving customer find an idle server.
Since £
T Y ES
thus
ae = (1 —a)E9,
where Fd denotes it busy period.
Hence B
a S
Eé = .
1 —aMP(e)

In the case of n = 1 it reduces to

S=1-a, Ple)=Fy=1—-a, a=

=

thus

which was obtained earlier.

In the following we are going to show what is the connection between these two famous
Erlang’s formulas. Namely, first we prove how the delay formula can be expressed by the
help of loss formula, that is

] — 2 —me1 () (%) m—1 (%) ()
" me k:()l T T 1_1% k:01 l (1- mlﬂ) +



As we have seen in the previous investigations the delay probability C(n,p), plays an
important role in determining the main performance measures. Notice that the above
formula can be rewritten as

nB(n, p)
n—p+pB(n,p)’

C(n,p) =

moreover it can be proved that there exists a recursion for it, namely

pin—1—p)-Cn—1,p)
(n=1)(n—p)—pC(n—1,p)’

starting with the value C(1, p) = p.

C(n,p) =

If the quality of service parameter is C'(n, p) then it is easy to see that there exists an
olyan n, for which C(n}, p) < a. This n’, can easily be calculated by a computer using
the above recursion.

Let us show another method for calculating this value. As we have seen earlier the prob-
ability of loss can be approximated as
N

%L

< £)

%\i

Let k = f,thusn—p—l—\/_k Hence

k)
nB(n,p) (0 + kD) fooii
n—p+pBn.p)  p+kvk—p+p-2l

" Vpo(k)
Vess o(k)\ "
ﬁ(ki“’““) - (1+km) .

o (k)

C(n,p) =

~

That is if we would like to find such an n, for which C(n}, p) < «, then we have to solve
the following equation

which can be rewritten as

If k, is given then



It should be noted that the search for £, is independent of the value of p and n thus it

can be calculated for various values of «.

For example, if a = 0.8,0.5,0.2,0.1,
then the corresponding k,-as are 0.1728,0.5061, 1.062, 1.420.

The formula n}, = p + kq,/p is called as square-root staffing rule. As we can see in
the following Table it gives a very good approximation, see Tijms [91].

Table 2.1: Exact and approximated values of n*

a=20.5 a=0.2 a=0.1

exact approximation | exact approximation | exact approximation
p=1 2 2 3 3 3 3
p=25 7 7 8 8 9 9
p =10 12 12 14 14 16 15
p =50 54 54 58 58 61 61
p =100 106 106 111 111 115 115
p = 250 259 259 268 267 274 273
p =500 512 512 525 524 533 532
p=1000 | 1017 1017 | 1034 1034 | 1046 1045

Let us see an example for illustration.

Let us consider two service centers which operate separately. Then using this rule overall
we have to use 2(p + ka+/p) servers. However, if we have a joint queue to get the same
service level we should use 2p + k,+v/2p servers. The reduction is

(2 - V2)kay/p

, that is the reason that the joint queue is used in practice.

C(n, p) is of great importance in practical problems hence so-called calculators have been
developed and can be used at the link

http://www.erlang.com/calculator/

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMc/MMc.html

Example 6 Consider a service center with 4 servers where A =6, u = 2.
Find the performance measures of the system.

Solution:

Py=0.0377, Q=1528, N =4528 S=1, 7 =3,

P(W > 0) = P(n>4) = C(4,3) = 0.509, W = 0.255 time unit, 7 = 0.755 time unit ,
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U, =-,e=0.35 time unit , F = 1.05 time unit ,

B~ w

E), = 4.2 time unit , U, = 0.9623.

Example 7 Find the number of runways in an airport such a way the the probability
of waiting of an airplane should not exceed 0.1. The arrivals are supposed to be Poisson
distributed with rate X = 27 per hour and the service times are exponentially distributed
with a mean of 2 minutes.

Solution:
First use the same time unit for the rates, let us compute in hours. Hence p = 30 and for
stability we need % < 1 which results n > 1.

Denote by P;(W > 0) the probability of waiting for ¢ runways. By applying the corre-
sponding formulas we get

Py(W >0)=0.278, P3(W >0)=0.070, P,(W >0)=0.014.
Hence the solution is n = 3. In this case Py = 0.403 and W = 0.0665hour, @ = 0.03.

Example 8 Consider a fast food shop where to the customers arrive according to a Pois-
son law one customer in 6 seconds on the average. The service time is exponentially dis-
tributed with 20 seconds mean. Assuming that the maintenance cost of a server is 100
Hungarian Forint and the waiting cost is the same find the optimal value of the server
which minimizes the mean cost per hour.

Solution:

@:AW:lOOx?’%ﬂW

E(TC) =100 x n + 100 x 600 x W

A5 20
—:%:—thusnzél.
T
Computing for the values n =4, 5, 6, 7, 8 we have found that the minimum is achieved
at n = 5. This case the performance measures are

W = 3.9second, P(e)=0.66, P(W)=0.34,
E6 =29.7second, &= 14.9second, Q = 0.65,

n=25 N=315 S=25  E(TC)=>565HUF /hour.
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2.8 The M/M/c/K Queue - Multiserver, Finite-Capacity
Systems

This queue is a variation of a multiserver system and only maximum K customers are
allowed to stay in the system. As earlier the number of customers in the system is a
birth-deat process with appropriate rates and for the steady-state distribution we have

%PO, for0<n<c
nlu

P, =
—FPy), forc<n<K.

cn— ccl

From the normalizing condition for F, we have

c—1 A" K A" -1
e (X )

n=0 n=c
A p
To simplify this expression let p = —, a = ~-.
w c
Then
c _aKfc .
K K %%, if a 7é 1
Z cn— ccl Z a - .
n=c n=c G(K—c+1), ifa=1
Thus
( c—1 —1
K—c
= e 3L I
i “— nl

s
I

\ L

The main performance measures can be obtained as follows

e Mean queue length

K K 2\ P pc K n—c
Q Z (n C) Z (TL )Cn Cc',u c! (n C) cn—c
n=c+1 n=c+1 n=c+1
K K—c K—c
~ Pypa nee1  Popa i1 Popta d ;

Popad Kc+1
¢ da l1—a

which results
0= Pypta

m[l — a7t — (1 —a)(K — ¢+ 1)a™]
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In particular, if a = 1 then the L’Hopital’s rule should be applied twice.

o Mean number of customers in the system
It is easy to see that

X=\1—Py) = pc

and since

N=Q+c¢
we get o

e Mean response and waiting times
The mean times can be obtained by applying the Little’s law, that is

N
A1 — Pg)

Q
ML~ Py)

In the case of an M/M/1/K system these formulas are simplified to

Py = {— (1)

KLH, (a=1)

T =

W:

b {51:;21’1, (a#1)

KLH, (a=1)

— el (a#1)
Q= K(K-1)
2(K+1) °

o Distribution at the arrival instants
By applying the Bayes’s rule we have

I1,, = P( there are n customers in the system| a customer is about to enter into the system )

_ hm{ [AAL + o(At)] P, }
a0 LSRN AL + o(AY) P,

{ [\ + o(At)/AL]P, }
1m K—1
At=0 | SN+ o(At) /AL P,
Y Y

A Zrlfz_ol P, 1— Py’

(n < K-—1).

Obviously in the case of an M /M /c/oo system II,, = P, since Pk tends to 0.
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e Distribution of the waiting time
As in the previous parts for Fyy(t) the theorem of total probability is applied re-

sulting
Fuw(t) = F (0>+I(Z_1H /tMe—mdx
W w £ n . (n — C)'
K-1 o] n—c
— F H 1 C,LL(C,UZL') —Ccux d
- W(0>+Z n - —(n_c>‘ € xX .
n=c t '
Since

A" S (e
/t ml dxiz 2!

=0

applying substitutions m = n — ¢, A\ = cu we have

/°° cu(cuw)”_ce_cw dr — i: (C/Mf).ze_‘z“t7
; (n—c)! P i!
thus
K-1 n—c c,ut
Fy(t) = Fw(0) + > 11, — ZH Z -

The Laplace-transform of the waiting and response times can be derived similarly, by
using the law of total Laplace-transforms.

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcK/MMcK.html

2.9 The M/G/1 Queue

So far systems with exponentially distributed serviced times have been treated. We must
admit that it is a restriction since in many practical problems these times are not expo-
nentially distributed. It means that the investigation of queueing systems with generally
distributed service times is natural. It is not the aim of this book to give a detailed anal-
ysis of this important system I concentrate only on the mean value approach and some
practice oriented theorems are stated without proofs. A simple proof for the Little’s law
is also given.
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Little’s Law

As a first step for the investigations let us give a simple proof for the Little’s theorem,
Little’s law, Little’s formula, which states a relation between the mean number of
customers in the systems, mean arrival rate and the mean response time. Similar version
can be stated for the mean queue length, mean arrival rate and mean waiting time.

Let a(t) denote the number of customers arrived into the system in a time interval (0, t),
and let 0(t) denote the number of departed customers in (0,¢). Supposing that N(0) = 0,
the number of customert in the system at time ¢ is N(t) = «(t) — §(t).

Let the mean arrival rate into the system during (0,¢) be defined as

Let 7(t) denote the overall sojourn times of the customers until ¢ and let T, be defined
as the mean sojourn time for a request. Clearly

Finally, let N; denote the mean number of customers in the system during in the interval
(0,%), that is

Nt - M
t
From these relations we have B o
Nt = )\tTt

Supposing that the following limits exist

A= lim \,, T = lim T;.
t—o00

t—o0
we get -
N =)\T,
which is called Little’s law .
Similar version is -
Q= \W

The Embedded Markov Chain

As before let N(t) denote the number of customers in the system at time t. As time
evolves the state changes and we can see that changes to neighboring states occur, up
and down, that is from state k either to £k + 1 or to k£ — 1. Since we have a single server
the number of kK — k 4 1 type transitions may differ by at most one from the number of
k+ 1 — k type transitions. So if the system operate for a long time the relative frequen-
cies should be the same. It means that in stationary case the distributions at the arrival
instants and the departure instants should be the same. More formally, II, = Dy.
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For further purposes we need the following statements
Statement 1 For Poisson arrivals

P (N (t) = k) = P (an arrival at time ¢ finds & customers in the system ).

Statement 2 If in any system N (t) changes its states by one then if either one of the
following limiting distribution exists, so does the other and they are equal.

I .= tlim (an arrival at time ¢ finds & customers in the system ),
— 00

Dy, = tlim (a departure at time t leaves k customers behind ),
—00
I, = Dy.

Thus for an M/G/1 system
I, = Py = Dy,

that is in stationary case these 3 types of distributions are the same.

Due to their importance we prove them. Les us consider first Statement 1.
Introduce the following notation

P(t):=P(N(t) = k),

1 (t) := P (an arriving customer at instant t finds k customers in the system ).

Let A(t,t + At) be the event that one arrival occurs in the interval (¢,¢ + At). Then

o(t) = lim P(N () =k | A(t,t + At)).

At—0

By the definition of the conditional probability we have

. P(N@) =k A(t,t+At)
W) = I =Pt an) -

o PUAWEEAD | N (1) = k) PN(t) = k)
lva P(A(t,t + At)) '

Due to the memoryless property of the exponential distribution event A(¢,t + At) does
not depend on the number of customers in the systems and even on t itself thus

P(A(tt+At) | N(t) = k) = P (A(t,t + At)),

hence

,(t) = lim P(N(t) = k),

At—0
that is
I, (t) = Pe(t).

This holds for the limiting distribution as well, namely

t—o0 t—00
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Let us prove Statement 2 by the help of Statement 1 .

Let Ry (t) denote the number of arrivals into the system when it is in state & during the
time interval (0,t) and let Dy (t) denote the number of departures that leave the system
behind in state k& during (0,¢). Clearly

(2.9) IRy (t) — Dy, (1) | < 1.

Furthermore if the total number of departures is denoted by D (t), and the total number
of arrivals is denoted by R () then

D(t)=R(t)+N(0)—N(t).

The distribution at the departure instants can be written as

o Di(t)
D= I "5y

It is easy to see that the after simple algebra we have

Dy(t)  Ry()+Dy(t)— Ry
D)  R(#)+N(0)—N(

(t)
t)

Since N (0) is finite and N (¢) is also finite due to the stationarity from (2.9) and R () —
0o, with probability one follows that

Dy (t R (L

Consequently, by using Statement 1 the equality of the three probabilities follows.

Mean Value Approach

Let S denote the service time and let R denote the residual ( remaining) service time.
Then it can easily be seen that

k=1
=Y E(R)P+ (Z (k- 1>Pk> E(S) = E(R)p + E(Q)E(S),

where E(R) denotes the mean residual time.
By applying the Little’s law we have

E(Q) = AE(W),

and thus
_ PE(R)
(2.10) E(W) = T,



known as Pollaczek-Khintchine mean value formula.
In subsection 2.9 we will show that

(2.11) E(R) = :

which can be written as

E(S?)  Var(S)+E*(S)

(212) E(R) = 2E(S) 2E(S)

= 5(CE+DEGS),

where C% is the squared coefficient of the service time S. It should be noted that mean
residual service time depends on the first two moments of the service time.

Thus for the mean waiting time we have

_ER) 2 ey ms).

l—p  2(1-p)

By using the Little’s law for the mean queue length we get

E(W)

_pP Ci+1
1—p 2
Clearly, the mean response time and the mean number of customers in the systems can

be expressed as

E(Q)

_p Ci41
2 2
_ p- Cs5+1

which are also referred to as Pollaczek-Khintchine mean value formulas.

Example 9 For an exponential distribution C% = 1, and thus E(R) = E(S) which is
evident from the memoryless property of the exponential distribution. In this case we get
2
p p 1 p
E(W) = -—E(5), E(Q) = , B(T) = pr(S), E(N) = —

Example 10 In the case of deterministic service time C% = 0, thus E(R) = E(S)/2.
Consequently we have




For an M/G/1 system we have proved that
M= Dy =P, k=01,...

therefore the generating function of the number of customers in the system is equal to the
generating function of the number of customers at departure instant. Furthermore, it is
clear that the number of customers at departure instants is equal the number customers
arrived during the response time. In summary we have

e[

Thus the corresponding generating function can be obtained as

o e fr(z)dz

k=0
(o] 00 ]g
rz
:/Z k') e_Ame(I)dx
o k=0 )

_ / e =27 £ dr = Le(A(1 — 2)),

that is it can be expressed by the help of the Laplace-transform of the response time 7.
By applying the properties of the generating function and the Laplace-transform we have

k k
AW 1) = E(N(N —1)...(N(—=k + 1)) = (=1)*LF (0)\* = \E(TH).
In particular, the first derivative results to the Little’s law, that is
N =T,

and hence this formula can be considered as the generalization of the Little’s law for an
M/G/1 queueing systems.

By the help of this relation the higher moments of N can be obtained, thus the variance
can be calculated if the second moment of T" is known.

Residual Service Time

Let us suppose that the tagged customer arrives when the server is busy and denote the
total service time of the request in service by X, that is a special interval. Let fx(z)
denote the density function of X. The key observation to find fx(z) is that it is more
likely that the tagged customer arrives in a longer service time than in a short one. Thus
the probability that X is of length x should be proportional to the length z as well as
the frequency of such service times, which is fs(x) dz. Thus we may write

Plx < X <z +dx)= fx(v)de = Cxfs(x)dx
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where C' is a constant to normalize this density. That is

Ct= /OO xfs(x)de = E(S),

=0
thus
_ zfs(z) '

E(X) = /000 rfx(zr)de = ﬁ/ﬂm 2 fs(z) dr = i((é))

Since the tagged customers arrives randomly in service time S hence the mean residual
can be obtained as

n n
E(S)=—, Var(S)=—,
(S) . (S) e
thus |
E(S?) = Var(S) + EX(S) = W
hence L+
n
E(R) = T

It is easy to see that using this approach the the density function the residual service
time can be calculated. Given that the tagged customer arrives in a service time of length
x, the arrival moment will be a random point within this service time, that is it will be
uniformly distributed within the service time interval (0, ). Thus we have

d
Plx<X <z+dr,y<R<y+dy) :—ny(:v)dm,qquadOSyg:p.
x

After substitution for fx(x) and integrating over x we get the desired density function
of the residual service time, that is

fr(y) = 1;[‘3(—}7;)(?;)
Hence
E(R) = /:CfR(x)dx = /acl_E(—F;)(x)dx,
Thus s E(?)
~ 2E(9)



Now let us show how to calculate this type of integrals.
Let X be a nonnegative random variable with finite nth moment. Then

oo Y

2" f(z)dr = [ 2" f(x)dx + | 2" f(x)dx,
Jen e |
thus . . y
2" f(x)dx = | 2" f(x)dx — | 2" f(x)dx
Jrs= [
Since . .
[at@s =y [ gz =y 1= F ).
hence . y
0<y"(1-F(y) < [ 2"f(x)de— [ 2" f(x)dr,
[roew]
therefore . Y
0< lim g (1= F@) < [ " fla)do — lim [ a"f(a)do,
0 0
that is

lim y" (1 — F(y)) =0.

Y—0o0

After these using integration by parts keeping in mind the above relation we get

793"—1(1 ~ P(2))dz = 7%”;‘@)@ _ E(f")'

In particular, for n = 2 we obtain

Pollaczek-Khintchine and Takacs formulas

The following relations are commonly referred to as Pollaczek-Khintchine transform
equations

(1-p)(1 = 2)

Gn(2) = Ls(A — A2)

Ls(A—Xz) — 2’
Lz(t) = Ls(t)g —tA<1+_AZ)S(t) !
t(1—p)
Iwlt) =737 ALs(t)’
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by the help of which, in principle, the distribution of the number of customers in the sys-
tem, the density function of the response and waiting times can be obtained. Of course
this time we must be able to invert the involved Laplace-transforms.

Takacs Recurrence Theorem
k

s =23 () EG™ ) gy

1—pi:1 1) 1+1

that is moments of the waiting time can be obtained in terms of lower moments of the
waiting time and moments of the service time. It should be noted to get the kth moment
of W the k 4 1th moment of the service time should exist.

Since W .S are independent and T' = W + S the kth moment of the response time can
also be computed by

kY _ N ! k—1
E(T)_Z<Z)E(W)-E(S ).

=0

By using these formulas the following relations can be proved

E(W) = AE(S?) _ pE(S) <1+C§)7

20—p) 1-—p 2
E(T) = E(W) + E(S),
E(W?) = 2(W)* + 3111@89[3),
B(T%) = E(V7) + 20,

Var(W) = E(W?) — (E(W))?,
Var(T) = Var(W 4+ 5) = Var(W) + Var(S).

Since
E(N(N —1)) = ME(T?)

after elementary but lengthly calculation we have

_AE(S?) AE(S2)\? A3 — 2p)E(S2)
Ve = i+ () any e
Since
E(Q) =) (k—1°P=> kP —-2> kP.+> P

1
E(N?) — 2N +p
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by elementary computations we can prove that

(S
Var(@) = 31 —p) (

AE(52) )2 AE(S2)
2(1-p) 2(1-p)

Now let us turn our attention to the Laplace-transform of the busy period of the server.
Lajos Takacs proved that
Ls(t) = Ls(t + X — ALs(t)),

that is for the Laplace-transform Ls(t) a function equation should be solved ( which is
usually impossible to invert ).
However, by applying this equation the moments the busy period can be calculated.

First determine [E(4). Using the properties of the Laplace-transform we have

After elementary but lengthly calculations it can be proved that

Varty - VeSB!

Now let us consider the generating function of the customers served during a busy period.
It can be proved that

Gny)(2) = 2Ls(A = AGy6)(2))

which is again a functional equation but using derivations the higher moments can be
computed.
Thus for the mean numbers we have

E(Na(9)) = 1+ AE(S)E(Na(9))

BNA()) = T
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which can also be obtained by relation

since

It can be proved that

1—p)+ NE(S?)
(1—p)?

Var(Ny(8)) = A

It is interesting to note that the computation of Var(0), Var(N4(9)) does not require the
existence of E(S?), as it in the case of Var(N), Var(Q), Var(T), Var(W).

As it is one of the most widely used queueing system the calculation of the main perfor-
mance measure is of great importance. Tis can be done by the help of our Java applets

Java applets for direct calculations can be found at

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MH21/MH21 . html
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MGammal/MGammal.html
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MEk1/MEk1.html

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MD1/MD1.html
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Chapter 3

Finite-Source Systems

So far we have been dealing with such queueing systems where arrivals followed a Poisson
process, that is the source of customers is infinite. In this chapter we are focusing on
the finite-source population models. They are also very important from practical point
of view since in many situation the source is finite. Let us investigate the example of the
so-called machine interference problem treated by many experts.

Let us consider n machines that operates independently of each other. The operation
times and service times are supposed to be independent random variables with given
distribution function. After failure the broken machines are repaired by a single or multi-
ple repairmen according to a certain discipline. Having been repaired the machine starts
operating again and the whole process is repeated.

This simple model has many applications in various fields, for example in manufacturing,
computer science, reliability theory, management science, just to mention some of them.
For a detailed references on the finite-source models and their application the interested
reader is recommended to visit the following link

http://irh.inf.unideb.hu/user/jsztrik/research/fsqreview.pdf

3.1 The M/M/r/r/n Queue, Engset-Loss System

As we can see depending on the system capacity r in an M/M/r/r/n a customer may
find the system full. Despite of the infinite-source model where the customer is lost, in
the finite-source model this request returns to the source and stay there for a exponen-
tially distributed time. Since all the random variables are supposed to be exponentially
distributed the number of customers in the system is a birth-death process with the
following rates

M=m—-k\ ., 0<k<r
,uk:ku s 1§]€§7’,
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hence the distribution can be obtained as

Pk:<Z)ka07 OSkST»

()

which is called a truncated binomial or Engset distribution .
This is the distribution of a finite-source loss or Engset system

Specially, if » = n that is no loss and each customer has its own server the distribution
has a very nice form, namely

n n
o' o
k k
P, = —
<n> . L+
> (%)
: i
=0
k n—k
k) \1+p 1+p ’
that is we have a binomial distribution with success parameter ip = P

1+p°
That is p is the probability that a given request is in the system. It is easy to see that
this distribution remains valid even for a G/G/n/n/n system since

___ES)
CE(S)+E(r) 1+p

where p = %, and E(7) denotes the mean time a customer spends in the source.

As before it is easy to see that the performance measures are as follows

o Mean number of customers in the system N

N=>) kP, T=N, Us=
k=0

=3
==l

e Mean number of customers in the source m

o Utilization of a source Uy



thus

1 U

E(r) =— .
(1) 1T

This help us to calculate the mean number of retrials of a customer from the source
to enter to the system. That it we have

E(NR) = )‘E(T)7

hence the mean number of rejection is E(Ng) — 1.

The blocking probability, that is the probability that a customer find the system full at
his arrival, by the help of the Bayes’s theorem can be calculated as

(n—r)P.(n,r)

Pp(n,r) = = = P.(n—1,7).
> (n=i)Pu(n,r)
i=0
This can easily be verified by
Pg(n,r) = ;IB%) ((n—7r)Ah 4+ o(h))P.(n,r) _ T(n —r)P.(n,r)
Z n—i)Ah + o(h))P;(n,r) (n—i)Py(n,r)
=0 i=0

(n=r)("")er
- n! T
e r P . <n o T) r!(nfr)!p

ZT:(” — i) (ZL) P’ i(n ~ z’)i!(n”—iwpi

=0 =0
n—1
'(n—l)! 'pr ( . )pr
=— r-(Tzlr)i)' = — ! = Pr(n — 177’),
n—1 . n— ;
Zi!(n—l—i)!p Z( i >p
=0 =0

Let E(n,r, p) denote the blocking probability, that is F(n,r, p) = P.(n — 1,r), which is
called Engset’s loss formula.
In the following we show a recursion for this formula, namely

n—1 r n—1 n—r r
p P
r r—1

R
g(nzl)pi T_Zl( 1) . (::fll)n;rpr
_ B —1p)  (n—r)pE(,r—1p)
1+ %=pE(n,r—1,p) 1+ (n—r)pEn,r—1,p)
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The initial value is

(n—1)p
E(n, 1 =Pn-11)= ——.
(Tl, 7p) l(n 3 ) 1+(n_1)p
It is clear that
. o /
n—0o, )\h—>n()1, nA—\ E<n7 " p) n B(TL, P )7
where
dzﬁ
1

which van be seen formally, too. Moreover, as (n —r)p — p’ the well-known recursion for
B(n, p') is obtained which also justifies the correctness of the recursion for E(n,r, p).

In particular, if 7 = n then it is easy to see that N = nﬁ and thus

p n 1 1
STiry MTayy T igp (7) ) (Np) =1, Pp =0,

which was expected.

In general case

r—1
A=Tu=XA=> An—k)P,#\n—-N), T:;.
k=0

Let us consider the distribution of the system at the instant when an arriving customer
enters into the system.
By using the Bayes’s law we have

M = lim A FOBDB - MBe
h—0 7—1 r—1
(Nh+o(h)P > AP,
=0 =0
r—1
71 ?ﬂ 1
pi= = 1
Y NP
1=0
- - 1 -
ANT=uyr-—=r=N
7]

which Little’s formula for the finite-source loss system.
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3.2 The M/M/1/n/n Queue

It is the traditional machine interference problem, where the broken machines has to
wait and the single repairman fixes the failed machine in FIFO order. Assume the the
operating times are exponentially distributed with parameter A and the repair rate is pu.
All random variables are supposed to be independent of each other.

Let N(t) denote the number of customers in the system at time ¢, which is a birth-death
process with birth rates

(n—k)A ,ha0<k<n,
A =
0 , ha k > n,
and with death rate
e = [, k>1.

Thus for the distribution we have
p=

where

and . .
Py = _ =— .
1+2 (ni!k)!é’k 2. (ni!k)!gk
k=1 k=0

Since the state space is finite the steady-state distribution always exists but if p > 1 then
more repairmen is needed.

For numerical calculation other forms are preferred that is why we introduce some nota-
tions.

Let P(k;\) a A denote the Poisson distribution with parameter \) and let Q(k; \) denote
its cumulative distribution function, that is

k

A
P(k;)\) = Fﬂ, 0<k<oo;

First we show that



where M
R=C=p1
A Q
By elementary calculations we have
k k
n! pu\n—k _u n! A n! A

P(n—Fk;R) G (5)" "eA (n—k)! (u) (n—k)! (u) P

n, R . n! —£ . n nt n! !

QR Samet L3 Sieat (3)

Hence a very important consequence is
Py = B(n, R).

The main performance measures can be obtained as follows

e Utilization of the server and the throughput of the system
For the utilization of the server we have

Us=1—F=1-B(n,R).
By using the cumulative distribution function this cab be written as
g - QU -LER)
Q(n; R)

For the throughput of the system we obtain
)\t = MUS

o Mean number of customers in the system N can be calculated as

k=0 k=0
1 n n—1
:n——Z(n—k)QPk—n——ZPkH—
k=0 k=0
Us
=n——1-F)=n——.
( 0) .
In other form
V- _RQ(n—l;R)_ _%
Q(n; R) o



e Mean queue length, mean number of customers waiting can be derived as

Q= Z —1)P, = ZkPk—ZPk—n——l—Po) (1—Py) =

:n—(l—Po)(lJr%):n—<1+§>Us.

e Mean number of customers in the source can be calculated as
U

m:Z(n—k)Pk:n—N %(1—130)
e Mean busy period of the server
Since 26
Us=1-F = W;
thus . 1P, U,
ARy A1 -U,)

In computer science and reliability theory application we often need the following

measure
o Utilization of a given source ( machine, terminal )

The utilization of the ¢th source is defined by

T
; 1
UD = lim — /X(at time ¢ the ith source is active)dt
T—oo T
0

Then A
U® = P( there is a request in the ith source)

Hence the overall utilization of the sources is

- o
U, = —k)P,=m==(1—-F).
Z(” )P, =m /\( 0)
k=0
Thus the utilization of any source is
1] m
U, = 1—PFy)=—
L n)\( ) = n
This can be obtained in the following way as well
Vo= —k m
g Nt hp
Z n k n )
k=1
since the source are homogeneous we have
U, =09 .

)



o Mean waiting time

By using the result of Tomko [I] we have

B 1/) - m
TN W n
Thus B n
AW 1/
and
)\WW:n—m<1+2) :n—%(1+g):§,

which the Litle’s law for the mean waiting time. Hence
o @ _L(n _1lte)
Ame o \Us 0
The mean response can be obtained as

— 1 1 1
poop\1-F o

It is easy to prove that
mAT = N,

which is the Little’s law for the mean response time. Clearly we have

o Further relations

and thus
mA = /JUS == )\t .

It should be noted that the utilization of the server plays a key role in the calculation of
all the main performance measures.

Distribution at the arrival instants

In the following we find the steady-state distribution of the system at arrival instants and
in contrary to the infinity-source model is not he same as the distribution at a random
point. To show this use the Bayes’s theorem, that is

n(n—1)~~-(n—k))\kp
Il (n) = lim Aeh+o(h)Pe  _  Aebh p 0
- n—1 - n—1 - n—1 n(n—1)-(n—j M\
h=0 3 s Nh+o(R) Py X000 APy Zj:(]l ( ZM(M N p
(n—1)-(n—k)\F (n—1)--(n—1—k4+1)\*
Hl Pk Hl Hk
(n=1)--(n—j)\ (n—1—i4+1)X\
1 + Z M1 pj 1+ Z Mg
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irrespective to the number of servers. It should be noted that this relation shows a very
important result, namely that at arrivals the distribution of the system containing n
sources is not he same as its distribution at random points, but equals to the random
point distribution of a system with n — 1 sources.

Distribution at the departure instants

We are interested in the distribution of the number of customers a departing customer
leaves behind in the system. This calculations are independent of the number of servers.
By applying the Bayes’s theorem we have

prpin(n—1)-(n—k)\et+1 P

v (pth+0(W) P 1 P Ji1 0
Dk(n) - }ZIH%) Zn ( h+ (h))P o Z” P. o n pin(n—1)-(n—j+1)\
=0 2 j=1 5T 0 J j=tH s Y ey Py
(n—1)--(n—k)\F (n—1)-(n—1—k+1)\F
_ Nl Mk _ Ml Mk — P (TL _ 1)
n—1)-(n—j+1)A—1 (n—1—i+1)A? k
1+ZJ2 )m( uj1) 1+Z Wi :

in the case when there is customer left in the system

1
1+Z (n—1—i+1)A¢

M1

DO (n)

if the system becomes empty.

Recursive Relations

Similarly to the previous arguments it is easy to see that the density function of the
response time can be obtained as

n—1 n—1 k
p(px)® .
Fre) = 3 rlaliy(n) = S° B0 e B — 1),
k=0 k=0
Hence the mean value is
n—1
k+1 1 —
=1 = ~(N(n—1)+1).
0 1% 1%
Similarly, for the waiting time we have
— O
fw(@) = fw(@lk)(n) = T e " Py(n — 1),
k=0 k=0
thus its mean is
n—1 k’ 1
Wn)=> —PF(n—1)=—(N(n-1)),
0 1% 1%



which is clear.
We want to verify the correctness of the formula
_ 1 —
T(n)=—(N(n—1)+1).
L
As we have shown earlier the utilization can be expressed by the Erlang’s loss formula,
hence

— 1- B(”? l)
N(n)=n—- ——2-.
0
Using the well-known recursive relation we have
1 1 1
1 ~B(n—1,- Bn—-1,-
B(n Yy = 1( 9)1 _ B Q)1 |
Since
_ 1-Bn-1,1%)
Nn—-1)=n—-1- 2
0
thus

1 _
B (n—l,—) =14+oN(n—-1)—(n—1)p.
0
After substitution we have

(o) - AT n- 0=
’ n+4(1+oN(n—1)—(n—1)o)

14 9oN(n-1)—(n-10  1+9Nn-1)—(n—1)p
no+1+oN(mn—1)—(n—1)p 1+oN(n—1)+o0
Therefore i) (1)
1+oN(n—1)—(n—1
ng—1+B(n, %) no—1+ =T e
0 0
M T n
0 1+ oN(n—1)+o.
Fnally
n— N(n) = _"
1+oN(n—1)+p
1+ o(N(n—1)+1) -
n— = —
¢ n— N(n)
Nn—-1)+1) = —
o(N(n—1)+1) "N ()



which is a recursion for the mean number of customers in the system.

Now we able to prove our relation regarding the mean response time. Keeping in mind

the recursive relation for N(n — 1) we get

|

(n) ==(N(n—1)+1)

N
Tl

A (n):g(mn—nﬂ):%

N
I

An = N(n))T(n) = N(n)

Y

which was proved earlier.

Now let us show how we can verify T(n) directly. It can easily be seen that

B n B no B no
n—i—%B(n—l,%) ng—l—B(n—l,i) no+1—Us(n—1)

that is there is a recursion for the utilization as well. It is also very important because by
using this recursion all the main performance measures can be obtained. Thus if A, i, n are
given we can use the recursion for Ug(n) and finally substitute it into the corresponding
formula. Thus

no 1
Usin—1)=no+1-— Us() :1—|—ng(1— Ug(n)>'
Since
N(n—l):n—l—w,
0
we proceed

L) = Loy Ustn=D)
M(N( 1)+ 1) u( 1 ; +1)

(o) (L) e

which shows the correctness of the formula.

In the following let us show to compute T'(n), W (n), N(n) recursively. As we have seen

— 1 —
T(n)= E(N(n I 1) —11— 1)
W(n)="T(n)— m = ;N(n - 1),



we have to know how N(n) can be expressed in term of T(n).
It can be shown very easily, namely

N(n) = Xn—Nn)T(n) = AnT(n) — AN (n)T(n)
N(n)(1+ AT (n)) = AnT(n)
— AT (n)
"= T
The initial values are

— 1
T(1) = p
R 2,

Now the iteration proceeds as

W(n) = ~N(n—1)

]
T(n) = p + Ii/(n)
¥ = (35

that is we use a double iteration. The main advantage is that only the mean values are
needed. This method is referred to as mean value analysis.

In the previous section we have derived a recursion for Ug(n) and thus we may expect
that there is direct recursive relation for the other mean values as well since they depends
on the utilization. As a next step we find a recursion for the mean number of customers
in the source m(n). It si quite easy since

Us
p np+1—Us(n—1)
n
_ p _ n
Nt = —mn—1) np+1—pm(n—1).
P
By using this relation for the wtilization of the source can be expressed as
m(n n 1
n np+1—pmn—1)n
1
_ n—1 _ 1
= 1 — —.
7;0_‘*‘1 _Un—1) " +1—(n—1)pU(n—1)
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For the mean number of customers in the system we have

np

Nn) =n — Us(n) _ np — Ug(n) _ " np+1-U(n—1) _
P P P
_nPp+n—nU(n—1)—1  n(np—Uyn—1))
np+1—Us(n—1) np+1—Us(n—1)
Since
Nin—1)=n—1-— Us(n —1 :np—Us(n—l) 1

p p

p(N(n—1)+1) =np—Uy(n—1)

Us(n—1) =np—p(N(n—1) + 1),

thus after substitution we get

N(n) = np(N(n—1)+1)
1+ p(Nn—1)+1)

Finally find the recursion for the mean response time . Starting with

using that

0= (@ )

pT(n—1) = —U:zn_—ll) - %
_ 1 n—1
IUT(TL— 1)4—;: —Us(n— 1)
U(n—l): (n—l)p
’ MN(n—1)+1

substituting into the recursion for Us(n) we obtain

T<n>:lnp—Us(n—1) :ln)gﬂ(n—l)le'
i p pAT(n—1)+1

Obviously the missing initial values are

m(1) = Ui(1) = Tlg
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Distribution Function of the Response Time and Waiting Time

This subsection is devoted to one of the major problems in finite-source queueing systems.
To find the distribution function of the response and waiting time is not easy. As it is
expected the theorem of total probability should be used.

Let us determine the density function and then the distribution function. As we did many
times in earlier chapters the law of total probability should be applied for the conditional
density functions and the distribution at the arrival instants. So we can write

n-1 Bk A
fr(n, z) :ZM(NI)keW (¢ :M(ux+§) L o—(patt)
rar A = (%) _u (n—=1)! Qn-1%)
T ’
1=
Q(n—1,4)

Q(n - 17 %)
Similarly for the waiting time
n—1 _ n—2  (uz)® 7!”(%)71—2—1‘ 2
(pa)=t _ Dico Whre (n—2—in€ *
fw(n,x) = 1 e M P(n—1)=
,; (k—1)! Qn—1,%)
WP =2, pr + %)
Q(n - 17 %)
To get the distribution function we have to calculate the integral
Fr(n,z) = / fr(n,t)dt.
0
Using the substitution y = ut + £, t= (y — Ii)/lﬂ j—; = ;%
Hence
L ,ua:-l—%
prty ynl [1 - > y_!e_y}
Fy(n :v):fi n—1n¢ ydy: Y u :1_Q(n—1,,u1:—|—’§)
’ Q(n_ 17%) Q(Tl— 17%) Q(n_ 17%)

Similarly for the waiting time we have

Qn =2 px + %)
Now let us determine the distribution function by the help of the conditional distribution

functions. Clearly we have to know the distribution function of the Erlang distributions,
thus we can proceed as

Fw(n, .1') =1-
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J!
n—1 n—1 (%)nilik e*%
= = )
k=0 k=0
Q(TL - 1a E)
Meantime we have used that
X 4 J
tJ Al
—eldt=1-— Z e
0 J! — 7!
and thus
! 1—j J i
S e S
e —e
—_ 7! 1l
j=0 (=) i—0

can be written as

=0 o J!
l 1—j A l Ap,
10 _ t+p) Yy o
:Z(Z_J)|e H_/O ( 1T €(t+u)_Q(la/~L>_/ ﬁe Ydy
§=0
QFZT#)
l yi At+p
“atn- -3 2] " -
i=0 M

During the calculations we could see that the derivative of Q(k,t) is —P(k,t), which can
be used to find the density function, that is

_ pPn—1, pr+ %)
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Generating Function of the Customers in the System

Using the definition the generating function G'x(s) can be calculated as

This could be derived in the following way. Let denote by F' the number of customers in
the source. As we have proved earlier its distribution can be obtained as the distribution
of an Erlang loss system with traffic intensity %. Since the generating function of this
system has been obtained we can use this fact. Thus

Gls) = B(") = B(") = "B =G 1)

To verify the formula let us compute the mean number of customers in the system. By
the property of the generating function we have

— , ) nYy
V) = Gy (1) = (G (1))
s=1
/ n— 1 n v 1 1
G (8) = - s"" Gri (§> 5" G E) (_3_2) ’

N (1) = nGpiuy(1) — Gy (1) = 1 — % (1 _B (n %)) _ = Ust),

thus

Laplace-transform of the Response Time and Waiting Time

Solution 1

By the law of the total Laplace-transforms we have




since the conditional response time is Erlang distributed with parameters (k + 1, p).
Substituting Py(n — 1) we get

s Q(n—l,’f)
IR IS
C\p+s Q(n—l,%)

Solution 2

Let us calculate Lr(s) by the help of the density function. Since the denominator is a
constant we have to determine the Laplace-transform of the numerator, that is

o0

n—1

Mx—i_li —(pz+& —sx

Lyum(s) = /M%e (nz+4) e dx
0

o0 n n—1
=e A //“L(M—m i ’\) etz
(n—1)!

0

By using the binomial theorem we get
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= e /1/
— (n—1—Fk)! k!
n—1 n—1-k k+1
_ -k (%) ( p ) !
k:o(n—l—k)! s
n—1—k
n n—1 <H w)
K % A m
= e X
) (n—1—Fk)!

u+s

Since

LNum(S)

Ly(s) ,
Q(n—1%)

thus

n . _ 1’ n+s

Lr(s) = (—“ ) 2oL
pt s Q(n—1%)

Solution 3

The Laplace-transform of the numerator be can obtained as

o)

$_+.H n—1 s -
LNum(S) — /u%e (l" JF)\) e %
0

Substituting t = px + & we get



and thus

L - tn_l ~te= i (t=5) 2 q¢
(n—1)!
((
1+ 2)t)
—en K ) e (1+3) gt
g+ s (n—1)
Substituting again y = “T“t g—; = “+S thus

n 7 n—1
s H Yy _
Lnum(s) = Yd
trum(8) = €2 (u+8) /(n—l)!e ’
pts

therefore

That is all 3 solutions gives the same result. Thus, in principle the higher moments of
the response time can be evaluated.

Since Ly(s) = Lw(s) - 74, thus
(T sQ L)
Lw(s) (M+S> Q(n—1,1%)

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MM1KK/MM1KK. .html
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MHypol1KK/MHypolKK.html
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Example 12 Consider 6 machines with mean lifetime of 40 hours. Let their mean repair
time be 4 hours. Find the performance measures.

Solution: X = % per hour, y = %‘per hour, p = % = % =0.1,n=6, P, =0.484
Failed machines 0 1 2 3 4 ) 6
Waiting machines 0 0 1 2 3 4 D
P, 0,484 {0.290 | 0.145 [ 0.058 | 0.017 | 0.003 | 0.000

0=0324, U, =0516, W =251hour, T =251+ 0.25=6.51 hour

e =40 hour, U, =0.86

m=nxU, =516, N=06-516=0.84

0.516 4 x 5.16 7
ES = - _ X ~ — hour
6x 45 %0484 6x0484 10

Example 13 Change the mean lifetime to 2 hours in the previous Example. Find the
performance measures.

Solution: % =2, i =4, % =2,n=06, P = ﬁ, which shows that a single repairman
is not enough. We should increase the number of repairmen.

2 3 4 bt 6
1 2 3 4 5
0.001 | 0.012 | 0.075| 0.303 | 0.606

Failed machines
Waiting machines
Py,

o O
O =

L _[_L1_
75973 | 75973

Us~ 0999, @ ~4.5 W ~225hours, 7T = 26.5 hours
€=2hours, U,~008 m=~05 N=b55 FE§=~oo.

All these measures demonstrate what we have expected because 1 is greater than 1. To
decide how many repairmen is needed there are different criterias as we shall see in Section
3.4, To avoid this congestion we must ensure the condition % < 1 where r is the number
of repairmen.

]

3.3 Heterogeneous Queues

The results of this section have been published in the paper of Csige and Tomko [16].
The reason of its introduction is to show the importance of the service discipline.

Let us consider n heterogeneous machines with exponentially distributed operating and
repair time with parameter A\ > 0 and u; > 0, respectively for the kth machine, k =
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1,--- ,n. The failures are repaired by a single repairman according to Processor Sharing,
FIFO, and Preemptive Priory disciplines. All involved random variables are supposed to
be independent of each other.

Let N(t), denote the number of failed machines at time t. Due to the heterogeneity
of the machines this information is not enough to describe the behavior of the system
because we have to know which machine is under service. Thus let us introduce an N(t)-
dimensional vector with components (z1 (t),..., Ty (t)) indicating the indexes of the
failed machines. Hence for N(¢) > 0 using FIFO discipline machine with index z,(t) is
under service. Under Processor Sharing discipline when all machines are serviced by a
proportional service rate, that is if N(¢) = k then the proportion is 1/k the order of
indexes (1 (t),...,x, (1)) is not important, but a logical treatment we order them as
(21 (t) <22 (t) < ... <y (t)). In the case of Preemptive Priority assuming that the
smaller index means higher priority we use the same ordering as before mentioning that
in this case the machine with the first index is under service since he has the highest
priority among the failed machines.

Due to the exponential distributions the process

X0 = (0 (@), w1, (2 0),

is a continuous-time Markov where the ordering of x1 (t),..., 2y (t) depends ot the
service discipline.

Since X (¢)(t) is a finite state Markov chain thus if the parameters Ay, pug, (1 < k < n)
are all positive then it is ergodic and hence the steady-state distribution exists. Of course
this heavily depends on the service discipline.

3.3.1 The M/M/1/n/n/PS Queue
Let the distribution of the Markov chain be denoted by

/

PO@)? 7Pil,...,ik(t)'

It is not difficult to see that for this distribition we have

P (t) = - [ZA

k

P o)=Y NPy i riyirin (£) =

r=1

Pﬂ(t>+ZMi]3i(t>a

o
Py )+ ) R

T#lek

k
1
- [Vil...ik + A Z Fi,. (t)
r=1

. . . . . . .
where 4,...,7, , is the ordering of the indexes ¢, ...,4, 7 and




r=1

The steady-state distribution which is denoted by
Py = lim P, (t),
t—o00
R1lk - tlirgo Pll'lk (t)

I1<ii<ig<...<i;<n, 1<k<n).

is the solution of the following set of equations

[Z& Py = ZmPi,
i=1 i=1
1 k
[Vz‘l...z'k T Z i,
r=1

i
> P,

r#i] .k
1 n
[E ; Hr

with normalizing condition

k
P = E Nip Py iy i T
r=1

n
Pl,...,n = E )\rpl.‘.,rfl,rJrl,‘..,n
r=1

Py ‘I'Zpil...ik =1

where the summation is mean by all possible combinations of the indexes.

The surprising fact is it can be obtained as

A,
i,

k
Py =CK ]
r=1
where C' can be calculated from the normalizing condition.

For the FIFO and Preemptive Priority disciplines the balance equations and the solution
is rather complicated and they are omitted. The interested reader is referred to the cited
paper. However for all cases the performance measures can be computed the same way.

Performance Measures

e Utilization of the server




o Utilization of the machines

Let U@ denote the utilization of machine i. Then

1
U@ — : A 1 p®)
x T

)

+

where T; denotes the mean response time for machine ¢, that is the mean time while

it is broken, and
P(’L) == Z Z Pil,...,ik7

k=1 i€(i1,...,ix)
is the probability that the ith machine is failed. Thus
_ J210)
T = ——F7ubp—,
A (1 — PW)
and in FIFO case for the main waiting time we have
S — 1
i

Furthermore it is easy to see that the mean number of failed machines can be
obtained as .
N=) PO
i=1

In addition

n

i A (1= POYT; =) " P9
=1

i=1
which is the Little’s formula for heterogeneous customers. In particular, for ho-
mogeneous case we

(n— N\ =N

which was proved earlier.

Various generalized versions of the machine interference problem with heterogeneous ma-
chines can be found in Poésafalvi and Sztrik [62] 63].

Let us see some sample numerical results for the illustration of the influence of the service
disciplines on the main performance measures
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Inpur parameters Machine utilizations
FIFO PROC-SHARING | PRIORITY
n=3
M =03 pu =07 0.57 0.57 0.70
A =03 puy=0.7 0.75 0.57 | 0.74 0.57 1 0.74  0.58
A3 =03 pu3=0.7 0.57 0.57 0.44
Overall machine utilization 1.72 1.72 1.72
n=23
A =05 =09 0.48 0.51 0.64
A =03 pu, =07 0.75 0.56 | 0.76 0.56 | 0.77  0.56
A3 =02 pu3=20.>5 0.62 0.58 0.44
Overall machine utilization 1.669 1.666 1.656
n=4
M =05 pu =09 0.38 0.429 0.64
A =04 pu,=0.7 0.41 0.423 0.49
0.903 0.906 0.922
A3=0.3 pu3=20.6 0.46 0.451 0.36
M=02 pu,=05 0.54 0.500 0.24
Overall machine utilization 1.814 1.804 1.751

Table 3.1: Numerical results

3.4 The M/M/r/n/n Queue

Consider the homogeneous finite-source model with 7,

r < n independent servers. De-
noting by N(t) the number of customers in the system at time ¢ similarly to the previous

sections it can easily be seen that it is a birth-death process rates

0<k<n-—1,

intenzitasokkal.
The steady-state distribution can be obtained as

Pk—(ql;:L)kaOa 0§k§T7

EL o (n\ 4
by, = O ( k:) p"Fo,
with normalizing condition
n
>
k=0
To determine Py we can use the following simpler recursion.
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Let % and using the relation for the consecutive elements of the birth-death process
our procedure operates as follows

CL():l,
—k+1
Clk:%gak—h 0<k<r-—1,
—k+1
ak:¥9ak—ly r<k<n.

Since .
Sh-
k=0

must be satisfied thus we get

Dividing both sides by Fy we have

1 &R 1
IR Ve e BLE

hence
Py
1 —I— Z Qg
k=1
Finally
Pk = CLkP().

Let us determine the main performance measures

e Mean number of customers in the systems can be computed as

N = Xn: kP,.
k=0

e Mean queue length can be obtained by

0= Z (k— )P, = T;'PO Z (k —T]:“)k! (Z) o,

k=r+1 T k=r+1

o Mean number of customers in the source can be calculated by

m=mn— N.

e Utilization of the system is computed by

Urzl—P().
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e Mean busy period of the systems can be obtained by
1-K U
n)\P() n TL)\PO

E5™ =

e Mean number of busy servers can be calculated by

r—1

r n r—1 n
F:Zk‘Pk—l— Z TPkZZkPk+TZPk:kak+rp(w>o)'
k=1 k=1 k=r k=1

k=r+1

Furthermore . .
SkRr Y R
U, - k=1 k=r+1 f
r r
e Mean number of idle servers B
S=r—7
Additional relation is
N=) kP+ > (k=r)Pi+r > P=Q+T7=Q+r—S=n-—
k=1 k=r+1 k=r+1

consequently we get o
mANT = N,

which is the well-known Little’s formula. Thus we get

__ 1 _
mA (W+;) =Q+T,
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that is

MAW + Mo =Q +T.

Show that
T =mop,
because from this follows o
mA\W = Q
which is the Little’s formula for the waiting time
Since ( -
n —
Pk—i—l - Pk7
Hi41
where

We can proceed as

k=r
r—1 n—1
A(n )(k+ 1 A
-y ry Py =
k=0 k _'_ 1 k=r
r—1 n—1 r—1 n
=> (k+1)Pe1+71Y_ Prpr = ZJP +rZP S iprY P=T
k=0 = j=r+1 j=1 j=r
Finally we get
om =T,
or in another form
Am = ur,
that is

mean arrival rate = mean service rate

which was expected because the system is in steady state. Consequently

Q0 0
W= e

30

el
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e Mean idle period of a server can be computed as follows.
If the idle servers start their busy period in the order as they finished the previous
busy period, then their activity can be written as follows. If a server becomes idle
and finds other j — 1 servers idle, then his busy period start at the instant of the
arrival of the j th customer.

Let € denote the mean idle period of the server and let €; denote the mean condi-
tional idle period mention above. Clearly

NP S
~ Ple)A  P(e)X
where -
P(e) =) Pj=1—P(W >0),
=0

is the probability that there is an idle server.

e Mean busy period of the servers can be calculated as follows.
Since

E§
Usie—i—Eé’
thus
5 — USE_§E_§ s r. S r = m
S 1-U;  1-I° =EP(e)d  SP(e)h  Ple)h  pP(e)
That is o
m
E§ =
puP(e)

Distribution Function of the Waiting and Response Time

This subsection is devoted to the most complicated problem of this system, namely to
the determination of the distribution function of the waiting and response times. First
the density function is calculated and then we obtain the distribution function. You may
remember that the distribution has been given in the form

( /'n i
P,
<k:)p 0
n
| k
(k)k.p
-~~~ P

— 0-
L rlpRT
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Introducing z = %, this can be written as

(/n
<l{j) Zikp()

P =
" klz=k
k
thus
VT (rz) 7k
Pk — (k) : PO
7!
B nlr"(rz)n k. ez P
(n = k)l (rz)n ez 0
" P(n —k,rz)
= k>r.
rl Pln,rz) ="
Since

Ix(n) = Py(n—1), thus
_r"Pn—1-krz)
7l P(n—1,r2)

Iy (n) Py(n —1), hak=r...,n—1

It is easy to see that the probability of waiting is

Inserting z this can be rewritten as

n—1

" Pn—1—k,rz)
Py = — Py(n—1
v ; rl Pln—1,rz) b(n —1)

P(i,rz)

r" 1=0
T pm_1=
7! b(n —1) P(n—1,rz)

QM —1—r1z)
ol P(n—1,r2)

n—1

We show that the distribution function of the waiting time can be calculated as

"Qn—1—r,r(z+ px))

Fuw(z)=1—
w() rlP(n—1,rz)

P()(’n, — 1)7

and thus

_r'Qn—1-rrz)

Fw(0) =1 rlP(n—1,rz)

Po(n— ].)
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which is probability that an arriving customer finds idle server. For the density function
we have

fw(0) =1— Py,

_ r"P(n—1—rr(z+ px))
fwlz) = pr r!P(n —1,rz)

Po(TL—l), x> 0.

If we calculate the integral f fw (x)dz-t that is 0 is not considered then
0+

R =1) [ (e et) T
/fW T'P(n—l rz) /'W (n—1-—r)! et

0+
By the substitution y = r(z 4 ut) we have g—; = i for the integral part we get

o

ynflfr
/—(n— sy eVdy=Q(n—1—rrz)

rz

that is

do = — Pyn—1)= P
/fw(l‘) T r!P(n— 1 rz) o(n ) W
as it was expected. Thus

/fW )dz = fi (0 /fW Ydo = 1.

Let us determine the density function for = > 0. That is

n—1

()
fw(x) = ru-—>——e " P(n—1)
kZ:; (k—r)!
n—1
(ru:v)k_” " P —1—Fk,r2)

— T P _ 1
kZ_;T'u (k — 7")! 7! P(n—1,rz2) o(n )
rur” Py(n — 1) nzzl rux)kr (rz)nik (o)

= e
r'P(n—1rz) e~ (k—r)l (n—1—k)!

_ rur"Py(n — 1)e GHne) "L L (rpx)t  (rz)nt-r=

B rlP(n —1,rz) il (n—1—7r—1)!

i=0
_rpr"Py(n — 1) (r(z 4+ pax)) " »
rlP(n—1,72) (n—1—7r)!
rur"Po(n — 1)P(n — 1 —r,r(z + px))

r!P(n —1,rz) ’

—r(z+ux)
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as we got earlier, but we have to remember that

Therefore

HW>@_/M@&

T - n—1—r
_ r PO(n — 1) /Tﬂ' (T(Z + /,Lt)) e—r(z+ut)dt
rlP(n —1,rz) (n—1—r)!

x
o0

TP -1 n—1-r
_ hn 1) / S ——E
rlP(n —1,rz) (n—1-—r)!
r(z+px)

_"Py(n—1)Q(n — 1 —7r,7(2+ px))
B r!P(n—1,rz) '

Thus for the distribution function we have
Fy(z)=1—P(W > x)
which was obtained earlier.

To verify the correctness of the formula let » = 1. After substitution we get

_ R(n—1)Q(n -2,z + pa)

bW >z) = Pln—1,2) ’
but
_ P(n—1,2)
Bon—1) = Qn—1,z)
thus
POW > 2) = Q(n — z,z + px)

Qn—1,z)

The derivation of the distribution function of the response time is analogous. Because the
calculation is rather lengthly it is omitted, but can be found in the Solution Manual for
Kobayashi [50].

As it can be seen in Allen [2], Kobayashi [50], the following formulas are valid for r > 2

Fr(z)=1-=Cie "™ +CoQ(n —r — 1,r(z + px)),

where

Ci=1+CQ(n—r—1,r2),
" Py(n — 1)

TN D - )P - Lra)
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Hence the density function can be obtained as
fr(z) = pCre™* — CorpP(n —r — 1,7(z + px)).

It should be noted that for the normalizing constant we have the following recursion

_ 1
PO()_l_'_ P + Z (Z-'-l ;)7 n>r,

with initial value
1 T
Pyl(r) = (1 + —) . r>1.
z

Laplace-transform of the Waiting and Response Times

First determine the Laplace-transform of the waiting time.
It is easy to see that by using the theorem of total Laplace-transform we have

Ly(s) =1 —PW+Z (w+s>k—r+1 Py(n —1).

We calculate this formula step-by-step. Namely we can proceed as

</ ru " Pyn—1)P(n—1—k,rz)
Ty s rlP(n —1,rz)

(]

k=r

1" Py(n—1)e"* — ( T )k_TH (rz)n-1-k
(

- rlP(n—1,r2) &= \rp+s n—1-—k)\

Then

where ¢ = k — r. Thus the last equation can be written as

n—r n—l-r (rutz n—1-r—i n—r
o ' Z ) ~ = (L e’ Q n—l—r,W+Z :
T+ s —~ (n—1-r—i) T+ s A

=0

Finally collecting all terms we get

ner TP _]_ —rz THTS
LW(S)zl—PW—l—< = ) " Loln = Le efQ(n—1—r,T“+S>

TS rlP(n—1,rz) A
C1—po o rrexPy(n —1)Q (n — 1 —r, ) ru "
B v r!P(n —1,7rz) ru+ s '
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To verify the correctness of the formula let r = 1.
Thus after inserting we have

LW(S) = PO(n — 1) 4 < H >n—1 €§P0(n — 1)Q (TL -2, u;\rs>

s P(n—1,2)

_ P(n—1,2) Q (n—2,52)
_Q(n—lz (u—i—S) Q(n—1,2)

()" ((”ﬂ) _

,u+s> s /L—l-S
Q(n—1,2) —1)! +€Q(n_2’ A )

<“>n1 . . _
_ \wts (;Hrs)n— ey s e+ s
“Qn-1a | wo1) s (n-2t] )

()" Fem-1x)
B Q(n—1,z2) 7

as we got earlier.

Keeping in mind the relation between the waiting time and the response time and the
properties of the Laplace-transform we have

a(e) = (4 ) Lo

pw+s

which is in the case of r = 1 reduces to

(n Y Qe
= () s

Java applets for direct calculations can be found at
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcKK/MMcKK.html

Example 14 A factory possesses 20 machines having mean lifetime of 50 hours. The
mean repair time is 5 hours and the repairs are carried out by 3 repairmen. Find the
performance measures of the system.

Solution:

p:—:
7

By using the recursive approach we get

== -
|
|
I
()
—_
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and so on.
Hence

CL(]:l
200

= Xx0.1x1=2
M0
20 — 1
Qo 1 x 0.1 x 9
20 — 2
az = =X 0.1x19=1.14
a, = 2073 01 % 1.14 = 0.646
1 1

P

Innen

T 1+30 ar  1+6.3394

= 0.13625.

Py =a; x Py =2 x0.13625 = 0.2775

Py =ay x Py =1.9x0.13625 = 0.2588 etc

The distribution can be seen in the next Table for

n=20,r=3 p=0.1

Number of busy | Number of waiting | Number of idle | Steady-state.
K under repair machines repairmen distribution
repairmen (Q) (S) (Pr)
0 0 0 3 0.13625
1 1 0 2 0.27250
2 2 0 1 0.25888
3 3 0 0 0.15533
4 3 1 0 0.08802
bt 3 2 0 0.04694
6 3 3 0 0.02347
7 3 4 0 0.01095
8 3 5 0 0.00475
9 3 6 0 0.00190
10 3 7 0 0.00070
11 3 8 0 0.00023
12 3 9 0 0.00007

Hence the performance measures are

Q = 0.339,
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Q

P(W > 0) = 0.3323, P(e) =0.6677, W = —~— = 0.918 hours, 58 minutes

An—N
m = 20— 2.126 = 17.874, U™ =0.844
U™ 5 (0.844
E§™ = = ~15.5 h =1 5=1.21
b 2 X 0136 5.5 hours, T 787, S 3
T 1787 s 1.213 50 x 1.213
Us=-=——=0.59 €= = = ~ 90.8 h
ST LT3 © T P(ex T 0667Tx L 0.667 o
T 1.787 50 x 1.787
ES — _ — ~132.1 h
P(e)A ~ 0.667x & 0.667 ome
m 17.874
U, == = ~ 0.893
n
- — 1
T =W+ — =0.981 4+ 5 = 5.981 hours
1
K, = mean number of waiting @achines _ Q _ 0.339 — 0.0169
total number of machines n 20
Ky — mean number of idle repalrmen _ § _ 1.213  0.404
total number of repairmen r 3

Let us compare these measures to the system where we have 6 machines and a single
repairman. The lifetime and repair time characteristics remain the same. The result can
be seen in the next Table

Number of machines 6 20

Number of repairman 1 3

Number of machines per repairman 6 6%
Waiting coefficient for the servers Ko 0.4845 0.4042
Waiting coefficient for the machines K 0.0549 0.01694

Example 15 Let us continue the previous Example with cost structure. Assume that the
waiting cost is 18000 Euro/hour and the cost for an idle repairman is 600 Euro/hour.
Find the optimal number of repairmen. It should be noted that different cost functions
can be constructed.

Solution:

The mean cost per hour as a function of r can be seen in the next Table which are
calculated by the help of the distribution listed below for r = 3,4,5,6, 7.

P | P | B | P | P | P | B | P | P
0.136]0.272 [ 0.258 | 0.155 | 0.088 | 0.047 | 0.023] 0.011 | 0.005
0.146 | 0.292 [0.278 [ 0.166 | 0.071 | 0.028 | 0.010 ] 0.003 | 0.001
0.148 [ 0.296 | 0.281 | 0.168 | 0.071 | 0.022 | 0.006 | 0.001 | 0.000
0.148[0.297 [ 0.282 | 0.169 | 0.072 | 0.023 | 0.006 | 0.001
0.1480.297 [ 0.282 | 0.169 | 0.072 | 0.023 | 0.006

| O O | W[ =3
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The mean cost per hour is

r Q S E(Cost) Euro
3 0.32 1.20 6480
4 0.06 2.18 2388
) 0.01 3.17 2082
6 0 4.17 2502
7 0 5.16 3096

Hence the optimal number is r = 5.
This simple Example shows us that there are different criteria for the optimal operation.
]

3.5 The M/M/r/K/n Queue

This system is an combination of the finite-source systems considered in the previous
sections. It is the most general system since for K = r we have the Engset system treated
in Section [3.1], for r =1, K = n get the system analyzed in Section [3.2] for K = n we
obtain the system of Section [3.4 For the value r < K < n we have delay-loss system,
that is customers can arrive into the system until the number of customers in the system
is K — 1 but then the must return to the source because the system is full.

As before it is easy to see that the number of customers in the systems is a birth-death
process with rates

AMo=(n—k) 0<k<K,
Jkpo, 1Z<E<ZT,
Hk = T, r<k<K

where 1 < r < n, r < K < n. It is qiute complicated system and have not been
investigated, yet. The main problem is that there are no closed form formulas as before,
but using computers all the performance measures can be obtained. The normalizing
constant Py(n,r, K) should satisfies the normalizing condition

K

ZPk(n,r, K)=1.

i=0

As before it can easily be seen that

"\ &

k pPo(n,r,K) ) OSI{Z<T,

Pk (n7 r, K) =
LAY

(i)

—~———PFy(n,r, K)

r<k<K
L rlphr -~

Y
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The main performance measures can be computed as

K K r—1 K
N=) kP, Q=) (k-nP, 7= kPi+rY B, m=n-N,
k=0 k=r k=1 k=r
T n—N —
US_;7 Ut_ n )\:ﬁ:,u?",
=% w22 w-7r 1
A A Iz
- N E — N)T —
noN__E@) gy c = NT g
n E(r)+T N

By using the Bayes’s rule it is easy to see that for the probability of blocking we have
(n— K)Pec(n, r, K)

Pp(n,r, K) = — =Px(n—1,1K).
(n —1i)Pi(n,r, K)
i=0
In particular, if K = n, then
A= \n—N) = ur,
thus —
_ N 1
T=—"—, E(r) = —, Pg =0,
A(n —N) =3 b

as it was expected.

Furthermore, by elementary calculations it can be seen that the normalizing constant
Py(n,r, K) can be expressed recursively with respect to K under fixed r,n. Namely we
have

(Fo(n,r, K)>_1 = (Py(n,r, K — 1))—1 + M

Y

plpE=r

with initial value

By using the Bayes’s rule it is easy to see that the probability that an arriving customer
finds k customers in the system is

i(n,r,K)=P(n—1,1rK), k=0---,K
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but the probability that a customer arriving into the systems finds k& customers there is

(n—k)Py(n,r, K)

i (n,r, K) = : k=0,...,K—1.

(n—1i)Py(n,r, K)

o

7=

Hence the probability of waiting and the density function of the waiting time can be
expressed as

K-1

Py(n,r, K) = Z Iy (n,r, K)

k=r

fw(O) =1- Pw<n,7’, K)

2 () ()

By using the Bayes’s rule it can easily be verified that

Pk(n_17TJK)

IT K) =
«(n, 7, K) 1—Pg(n—1,r,K)’

and analogously to the earlier arguments for the density function we obtain

purr"P(K — 1 —r,rz2) Py(n—1)
fw(x) = :
r'P(K —1,rz) 1—Pg(n—1,r K)

In paricular, if K = n, that is all customer may enter into the system, then
Px(n—1,r, K) =0 and thus we got the formulas derived before.

By reasonable modifications for the distribution function we have

QK —1—r,r(z+ pux)) Py(n—1,1rK)
rlP(K — 1,rz) 1—Pg(n—1,rK)

The corresponding Laplace-transform can be computed as

K , s ru+s
o rrex Q (K —1—r, ™) Py(n— 1,1, K)

L =1-—P K ’
w(s) w(n,r, K) + (WJr S) rl P(K —1,r2)(1 = Px(n— 1,1, K))

3.6 The M/G/1/n/n/PS Queue

This system is a generalization of system M/M/1/n/n/FIFO treated in Section [3.2]
The essential differences are the distribution of the service time and the service disciple.
Since the service times are not exponentially distributed the number of customers as a
stochastic process is not a Markov chain. In this Section we introduce the model which

has been published in Yashkov [101].
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The requests arrive from a finite-source where they spend an exponentially distributed
time with parameter A. The required service time S is generally distributed random vari-
able with ES < oco. Let us denote by G(x) and ¢(z) its distribution function, density
function, respectively, assuming that (G (07) =0). The service discipline is Processor
Sharing, that is all customers in the service facility are being served but the rate is pro-
portional to the number of customers in service.

The method of supplementary variables is used for the description of the behavior of the
system.

Let us introduce the following random variables.

Let v(t) denote the number of customers in the system at time ¢, and for v(t) > 0 let
&(t), ..., & (t) denote the elapsed service time of the requests.

The stochastic process

X(t) = (v(t);&(t), .., & (1)
is a continuous-time Markov process with discrete and continuous components which are
called piecewise linear Markov process.

It should be noted the many practical problems can be modeled by the help of these
processes and the interested reader is referred to the book of Gnedenko-Kovalenko [31].

Let
Pk<t,$1,,Z’k)d.l'ldIk:P(V(t):k’,l’lSfl<xl+d.ﬁz,2:1,,k’),

that is Py(t,z1,...,21), k = 1,...,n denotes the density function that at time ¢ there
are k customers in the system and their elapsed service times are zy, ..., xj.

Let 0 be a small positive real number. Then for the density functions Py(t, z1,...,zx) we
have the following set of equations

i 5 5
+(k+1)/Pk+1 (t—5,$1—za~--7$k+1—k—+1)x
0

b —G(@m) G (zh41) — G [Thy1 — ﬁ}
:ll—G(JZ'Z—L) 1—G|:33k+1—

k

Dividing both sides by [] [1 — G (x;)] and taking the limits as § — 0, ¢t — oo we have
i=1
the stationary equations, namely

X

)

5 dflj'k+1.
el

L SNy Py )=
kiﬂ oz, n q, (T1,...,71) =
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[e.o]

/q,c+1 (1, Tks1) g (Tpp1) dogyq, k=1,...,n—1,
0

where
G (21, om) = Jim Py (o) /][I0 = G ()
are called normalized density functions.

Similarly, for Py and g, (z1,...,z,) we obtain

APy = / ¢ (21) g (1) da,
0

I 9
=N g (1, ., xn) = 0.
n;&xiq (71 Ty)

Beside these equation we need the boundary conditions which are
aq1 (0) = /\nP(),
qk (07ZE1, s 7xk—1> = )\(TL— k+ 1)Qk—1 (xla s 7xk—1)7
k=1,...,n.
The solution to these set of integro-differential equations is surprisingly simple, namely
dk (‘rlu s 7[Ek) = PO/\kn'/ [(TL - k)'] )

which can be proved by direct substitution.
Consequently

ol F
Py (z1,...,21) = P\ (n_k)!g[l—G(a:i)],

1=1,...,n.

Let us denote by P, the steady-state probability of the number of customers in the system.
Clearly we have

0 0

Probability P, can be obtained by using the normalizing condition > P; = 1.
i=0
Recall that it is the same as the distribution in the M/M/1/n/n system if o = AES.
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It is not difficult to see that for this M/G/1/n/n/PS system the performance measures
can be calculated as

k=1
1 _
(i) U = X_:n_N
$+T n o’
thus
_ 1 N
T=— —,
An—N
hence
ANn—NT =N

which is the Little’s formula.
Clearly, due to the Processor Sharing discipline the response time is longer then the re-
quired service time, and there is no waiting time since each customer are being served.

The difference is T — E(S).

It can be proved, see Cohen [I4], that for an G/G/1/n/n/PS system the steady-state

probability that customers with indexes 74, ...,%; are in the system can be written as
d E(S;)
P(iy,...,i) =C-k | | pty, pi=——, i=1,...,n
]-1:[1 ’ ©Em)

For homogeneous case we get

Po=C -k <Z)pk.

3.7 The G/M/r/n/n/FIFO Queue

This section is devoted to a generalized version the finite-source model with multiple
servers where the customers are supposed to have heterogeneous generally distributed
source times and homogeneous exponentially distributed service times. They are served
according to the order of their arrivals. The detailed description of this model can be
found in Sztrik [77].

Customers arrive from a finite source of size n and are served by one of r (r < n)
servers at a service facility according to a first-come first-served (FFIFO) discipline. If
there is no idle server, then a waiting line is formed and the units are delayed. The service
times of the units are supposed to be identically and exponentially distributed random
variables with parameter u. After completing service, customer with index i returns to
the source and stays there for a random time 7; having general distribution function Fj(x)
with density f;(z). All random variables are assumed to be independent of each other.
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Determination of the steady-state distribution

As in the previous section the modeling is more difficult since the involved random times
are not all exponentially distributed and thus we have to use the method of supplementary
variables.

Let the random variable v(t) denote the number of customers staying in the source at
time ¢ and let (al t),... ,a,,(t)) indicate their indexes ordered lexicographically, that is
in increasing order of their indexes.

Let us denote by (,6’1 t),..., ﬁn_y(t)) the indexes of the requests waiting or served at the
service facility in the order of their arrival. It is not difficult to see that the process

Y(t) = (V (t) y O (t) ) aau(t);ﬁl (t) ) 7ﬁn—u(t)) ) (t > O)

is not Markovian unless the distribution functions F; (z), = 1,...,n are exponential.

To use the supplementary variable technique let us introduce the supplementary variable
€a; (t) to denote the elapsed source time of request with index «;, i =1,---,n. Define

X (t) = (V (Zf) s Q0 (t) g ,Oél,(t); fal (t) g ,f()él,(t); 51 (t) g -/anu(t)>

This is a multicomponent piecewise linear Markov process.

Let V; and C} denote the set of all variations and combinations of order k of the in-
tegers 1,2, ..., n, respectively, ordered lexicographically. Then the state space of process
(X (t),t > 0) consists of the set of points

(il,...,ik;l‘l,...,[L’k;jl,...,jn_k)

where
(11, .. y1k) € CF (1, oo oy Jnik) € Vi, € Ryyi=0,1,...,k,k=0,1,...,n.

Process X(t) is in state (i1, ..., %1, ..., Tk; J1, - - -, Jnk) if k customers with indexes
(41, ...,1x) have been staying in the source for times (zy,...,2), respectively while the
rest need service and their indexes in the order of arrival are (ji, ..., jn_k)-

To derive the Kolmogorov-equations we should consider the transitions that can occur in
an arbitrary time interval (t,t + h) . For 0 < n — k < r the transition probabilities are
then the following

P[X(t—i-h):(ll,,Zk7x1+h,,xk+h7]1,,jn,k) |

X(t) = (il,...,ik;xl,...,xk;jl,...,jn,k)]
=k ] ]fiéxég)h) +o(h),

=1

P[X(t+h)2(21,72k,$1+h,,l’k—l—h,jl,,jn,k) ’
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J W i /

X (t) = (@1,...,jn_k,...,zk;ml,...,y,,...,x;;jl,...,jn_k_l)]

k
finw W) R leﬂl(fﬂl‘l’h)_i_o(h)’

where (iy,...,5, 4,...,i) denotes the lexicographical order of indexes (iy, ..., %5, jn_&)
while (z1/,...,y,...,x,) indicates the corresponding times.

For r < n — k < n the transition probabilities can be obtained as

P[X(t+h):(21,7Zk,$1+h,,$k+h,]1,,jn,k> ‘

X () = (i1, i3 21, T s Jnmi)]

—F h
1—ruhH l xl;l_))jto(h),

P[X(t—l—h):(z’l,...,z’k;asl+h,...,xk—|—h;j1,...,jn_k) |

7 7 ’

X (t) = <117~-7]n7k7---Jk;l'h-u;y;--‘7$;€§j1;-~,jn—k—1>} =

o fjn—k(y)h i 1_171'[ (iL‘l—i-h)
ol e R

For the distribution of X (¢) introduce the following functions
QO;jL..-,jn <t> =P (V (t> =0; ﬁl (t) =J1,--- 7571 (t) = ]n) )
Qila---yik§j17---ajn—k (mla sy Lk t) =
Pw(t)=Fka(t)=dp,...,00 () =i5; &, <w1,...,&, < xp;

61 (t) = jl? cee 75nfk (t) = jn7k> :
Let A; is defined by 1/\; = E(7;). Then we have

Theorem 2 If 1/)\; < o0, i = 1,...,n, then the process (X (t),t > 0) possesses a
unique limiting ( stationary, steady-state) distribution independent of the initial condi-
tions, namely

Q0ji,jn = M Qg (1) 5

Qir,iigrmr (P15 -+ p) = 0 Qiy iy g (T1, -0, 83 1)
t—o0

Notice that X (t) belongs to the class of piecewise-linear Markov processes, subject to
discontinuous changes treated by Gnedenko and Kovalenko [31]. Our statement follows
from a theorem on page 211 of this monograph.

Since by assumption Fj(x) has density function, for fixed & Theorem [2| provides the
existence and uniqueness of the following limits

qily"'yik;jlw"ajnfk (Z’h Ce ,l’k) dl’l e dl’k =
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=Pw{t)=kar(t)=i1,...,ap (t) =ipx; <&, <z +de,l=1,... k;
/Bl(t>:jlu"wﬁnfk(t):jnfk)a kzlw"an

where ¢, ivijrojoi (1, .., x)) denotes the density function of state
(’il, ce ,ik;ilj‘l,. .. ,l’k;jl,. .. 7jn—k:) when t — oo.

Let us introduce the so-called normed density function defined by

Qiv,.oiigidtyeedn—k (xh s 7x1€)

i (00 = T Gy (= R (o)

Then we have

Theorem 3 The normed density functions satisfy the following system of integro-differential

equations , with boundary conditions ,

0 0

(31) {8_951 + ...+ a—xk} q’il:“wik;jl,m,jnfk (ZL’l, - ,l‘k)

= - (TL - k) Mdil,..‘,ik;jl,...,jn,k (xlu s )xk> +

o
~ ! ! / d
T Qg ity \E1e Y 2 ) fi () dy,
0
(3-2) Qiv,...igij1yerdintk (Ih oo 21, 0,4, ,Uﬁk) =

=p E : i, ir— 138041 e 8501 ($1> A TR PR 7xk)

Vi
forl=1,...)k, 0<n—k<r
0 01" .
(33) {8_1‘1 + ...+ 8_ZE]J i, iigiftsesiini (1‘1, e ,Z‘k) =
= —TUGi1 o igii1oe ok (1, .. x) +
o
+ / CL‘II7._.7j;_k7._,,i;€;j1,,_,7jn_k_1(ajl? Y x) fi (Y)dy
0
(3.4) Qi rooosipitrin s (@15 21,0, 2141, .o, T) =

=K E it ot sits 1 emsinidtreesgnp (T1 oy T1=1, Tig1s - -+ Th)
i
Vj1 ~~~~~ Jr—1

forl=1,....k, r<n—-k<n-—1
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furthermore
oo

TQoy .. jn = /an;jl,...,jnl(y)fjn (y) dy

0

The symbol [ 1" will be explained later while

i

V;‘l’m,js = [(ilajla s 7js)7(jlailaj27' e 7j8)7' c (jl:' - 7.7'577;1)] € VZ}H

Proof: Since the process (X (t),t > 0) is Markovian its densities must satisfy the Kolmogorov-
equations. A derivation is based on the examination of the sample paths of the process
during an infinitesimal interval of width h. The following relations hold

Qv inigroini (X1 F hy oo 2+ h) =

k
1— Fz 1‘[ + h)
fd qil,---,ik§j17---7jn—k (ZEI, e 7fL‘k) (1 - n — H l +
=1
- Zl l’[ + h) ~ / ’ ’
H + qi,l7---7j;_k7---1i;€§j17---7jn—k—1 (:Bl, R T ,xk> X
=1 0
fi ) h
X —"————dy+o(h),
1 - F}n—k ('CCZ) ( )

Qil,...,ik;jl,...,jn,k (.Tl + h? sy Tp—1 + h7 07 Li+1 + h7 e, T + h) h =

ﬁ F;, (s +)h) "
;

X p1h E iy, it 130041 53T sk (@1, 1, Tigs -, Tp)

Vi
Jlsedn_k

for0<n—k<r, 1=1,... k.

Similarly
Qirooosipiiogn (@1 +hy o 2 + h) =
k
1-— Fl xl + h)
= Giroosirijrrin (L1, -, Tg) (1 — rph) H L
=1 (1)
EL_FB (it h) [
— 17, (T ~ / / ’
+H 1 F (331) /q AP F T S <x1,...,y,...,xk> X
=1 “ 0
fi o W) h

) Ik T gy o(h),

Qv itei g1y sdn—tk (1'1 + ha sy Tp—1 + ha 07 Ti4+1 + h‘a sy Tk + h) h =
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k
1—F, (xs+h)
:o(h)+H T (@) X
s=1 S

sF#£l
XPh Y Gyt stivs it edns (BT - BT, T T)
i
Vj1 ,,,,, In—k

forO<n—k<r, =1,... k.

Finally
QO;J’L...,jn = Q0§j1,...,jn (1 - Tuh) +
[ fia ()
+/an;31,...,3n_1 (y) 1—F, () dy+o(h).
0

Thus the statement of this theorem can easily be obtained. Dividing the left-hand side
k

of equations by [] (1 — F;, (z; + h)) and taking into account the definition of the normed
=1

densities taking the limit as h — 0 we get the desired result.

In the left-hand side of (3.1])(3.3) used for the notation of the limit in the right-hand side,

the usual notation for partial differential quotients has been applied. Strictly considering

this is not allowed, since the existence of the individual partial differential quotient is not

assured. This is why the operator is notated by [ |*. Actually thisis a (1,1,...,1) € R*
directional derivative, see Cohen [I4].

To determine the steady-state probabilities

[Qo;j1,---7jn> Qila---aik§j17---7jn—k] )
(i1,...,ix) €CF, (Giyoosdnk) EVY,, k=1,...,n

we have to solve equations (3.1])(3.3]) subject to the boundary conditions ({3.2))(3.4]).

If we set
Qoijr,..njn = Cos

Qiv e yir;j1yeesdn—rk (I1, e ,l’k) = Cg, k= 1,...,n,

then by direct substitution it can easily be verified that they satisfy these equations with
boundary conditions. Moreover these ¢ can be obtained by the help of ¢,,, namely

-1
Cp = (r!r”_'r—k,u"_k) Cns 0<k<n-—nm,

cL = ((n — k)!u”’k)flcn, n—r<k<n.

Since these equations completely describe the system, this is the required solution.

Let Qi,....ixijr...5._» denote the steady-state probability that customers with indexes

(41,...,1x) are in the source and the order of arrivals of the rest to the service facility
is (j1,- .-, jn—k). Furthermore, denote by @, ;. the stationary probability that requests
with indexes (i1, ...,ix) 1 are staying in the source.
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It can easily be seen

-1
Qihwik;jl,m,jnfk - ()‘iu R )\Zk) C, k= 17 RN

By using the relation we obtained for ¢; we have

n—r— n— -1
Qiy.ipy = (N — k)!(r!r ST VU )‘ik) Cn,

(11,...,1) €CY,  k=0,1,....,n—r.
Similarly
Qiy,.iry = (,unfkkz‘l, S Aik)ilcnv
(i1,...,1x) € CF, k=n-—r...,n.

Let us denote by Qk and P, the steady-state probability of the number of customers in
the source, in the service facility, respectively. Hence it is easy to see that

Qir,orin = Q1,0 = Qn,

Qk:Pn—ka k?:07...,n.

Furthermore R
Cn:Qn(Alw--;)\n);

Qk = Z Qil,...,ik7

(i1,...,ik)€C£

where Qn can be obtained by the help of the normalizing condition Qk =1.
k=0

n
In the homogeneous case these formulas reduce to

- n! A\
e ()0 i 0zhznr

—rlklrneher \

. n\ /A\"F .
ka(k)<—> Qn, forn—r<k<n,
W

which is the result of the paper Bunday and Scraton [12], and for » = 1 is the formulas
obtained by Schatte [72]. Thus the distribution of the number of customers in the service

facility is
R n\ A\ .
Pk:()(—> P, for 0< k<,
k) \u

. n! M\
P = ri(n — k)lrk=r (;) P, for r<ks<n.

This is exactly the same result that we got for the < M /M /r/n/n > model.
It should be underlined that the distribution of the number of customers in the system

does not depend on the form of F;(x) but the mean 1/);, that is it is robust.
]
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Performance Measures

e Utilization of the sources

Let Q) denote the steady-state distribution that source 7 is busy with generating
a new customer, that is

k=1 iE(il,...J‘k)ECg

Hence the utilization of source 7 can be obtained as
U — Q(i)_

e Utilization of the servers

As we have calculated earlier the utilization of a server can be derived as

UCPU—%<Z]€FA))€+T‘ Z Pk> =
k=1

k=r+1

=S 3

)

where 7 denotes the mean number of busy servers. Thus the overall utilization of
the servers is 7.

o Mean waiting and response times
By the results of Tomko [92] we have

QW = (1/\) (1/ N+ Wi +1/p) ",

Thus for the mean waiting time of the customer with index ¢ we obtain

Consequently the mean response time T} of the ith request can be calculated as
T=Wi+1/u=(1-Q9) (nQM) ", i=1,...n

Since
n

> (1-QY) =N,

=1

where N denotes the mean number customers at the service facility. This can be
rewritten as .
i=1

which the Little’s formula for the G/M/r/n/n/FIFO > queueing system.

It should be noted that using the terminology of the machine interference problem U @,
W;, T; denote the utilization, mean waiting time and the mean time spent in a broken
state of the ith machine.

This model can be generalized such a way that the service intensities depend on the
number of customers in the source, see Sztrik [79, [80].
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Part 11

Exercises
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Chapter 4

Infinite-Source Systems

Exercise 1 Solve the following system of equations by the help of difference equations

ARy = pby
AN+ )P, = APy—1 + pPpi1,mn > 1.

Solution:
It is easy to see that it can be rewritten as

AP, 1 — A+ )P+ puPry1=0n=12...

which is a 2-nd order difference equation with constant coefficient. Its general solution
can be obtained in the form

P, =z} +crh,n=12,...
where x1, xy are the solutions to
px? — (A + )z + A = 0.
It can easily be verified that x; = 1, r9 = o and thus
P,=ci4+co",n=12....

However P, = oF,, and because ZZOZO P,=1,thusci=0and co = F=1-—p.
| ]

Exercise 2 Find the generating function of the number of customers in the system for
an M/M/1 queueing system by using the steady-state balance equations. Then derive the
corresponding distribution.

Solution:
Staring with the set of equations

APy = pby
A+ )P, =P+ pPrp,n>1
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by multiplying both sides by s* and then adding the terms we obtain
AGiy(s) + uGin(s) = nPo = AsG(s) + =G (s) = R,

Thus we can calculate as

Gn(9) ()\(1 —s)+p

(-2 (-
R R

Since Gn(1) = 1, therefore

That is

l—o
Gls) = 1—sp’

which is exactly the generating function of a modified geometric distribution with pa-
rameter (1 — p). It can be proved as follows, if

P(N=k)=(1-00" k=0,...

then its generating function is

oo 1_

Zskl—g 1 ;

k=0 —s0
n

Exercise 3 Find the generating function of the number of customers waiting in a queue
for an M/M/1 queueing system.

Solution:
Clearly

Go(s) = (Py+ P)s° + Z SR =R +Y P =1-0+) s (1 -9
k=1 =1

—1—@+@Z (1—0)d =1— 0+ 0Gn(s) = 1— (1 — Gn(s)).

For verification let us calculate the mean queue length, thus

' ' Y
Glo(1) = oG (1) = 17—,
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Exercise 4 Find the Laplace-transform of T and W for an M/M/1 queueing system.

Solution:
It is easy to see that

Ly(s) = i(ﬂis>k+lgk(1 —a=0- Q)MiS i(/ﬁfs)k

k=0 k=0
ptsl— -t ptsp(l—o)+s pu(l—o)+s’

which was expected, since T' follows an exponential distribution with parameter p(1 — o).
To get the Laplace-transform of W we have

00 k e’} k
H k ® k
L = 1—p)=1- 1-—
w(s) g:(u+s)g( 0) Q+§:(M+S)Q( 0)
=0 k=1
1 —
p(l—o)+s
which should be
Ly(s)
o
fits
since y
L =L )
7(8) W(S),U—FS
To show this it can be calculated that
pts  p(l—o) p+s n(1— o)
Lw(s) = Lr(s = =1—0o+p—————.
wis) 7()/t pl—o)+s p (L — o) +s

Let us verify the result by deriving the mean values T and W.

, L 1
L0 ==y
/ . / _ 0
Liv(0) = oLr(0) = = 7.
thus . 0
e T

which was obtained earlier.
| |

Exercise 5 Show that for an M/M/1/K queueing system

Am NE) ==, r<l
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Solution:
It is well-known if p < 1 then

. K
dm o =0
JE— _ K K+1
Since N = o1 ((fi :)1()1{:1-(12) ), it is enough to show that
. K _
dm Ko =0,

This can be proved by the L’Hospital’s rule, namely

) K 00
lim K = —
K—o0 p™ o0
1 K
Igg{l)o p~ K - I}gréo —Inpp=K B —plnp =0

Exercise 6 Show that for an M/M/1/K queueing system the Laplace-transform

K

K 1_<ui>

Lp(s) = —— -
7(s) 1—Px p—A+s

satisfies Lr(0) = 1.

Solution:
Py 1—pf Py 1—pf
LT(O): 2240 4 0 p
. 11;K+1 1_pK
I
B 1_[0 1_pK+1 1_pK
_1_pK+1 1_pK+1_pK+pK+1 1—p
=1.
]

Exercise 7 Find T by the help of the Laplace-transform for an M/M/1/K queueing
system.

Solution:

Since




then

o\ —(K+1) K
p JP K (£ .i(N—A+s)—(1—<M18) )
T(S)_].—PK (M_)\+S)2
K+1 (1 K
Ly (0) = 220 nr (p l)+p :
! 1 —Pg (1= A)?
e (50 (51)
— K +1 - 1 + K _ 1
MNi—Poa—p2 7 b P
1 pPo(Kp™ — Kpf+! 4 p% — 1)
A1 - Pg) (1—p)?
1 pR((K+1)p" — Kpitt 1)
A1 — Pg) (1—p)?
N
M1 = Pg)’
that is
_ N
T—=__ "
A1 — Pg)’

which was obtained earlier.
The higher moments can be calculated, too.
]

Exercise 8 Consider a closed queueing network with 2 nodes containing K customers.
Assume that at each node the service times are exponentially distributed with parameter
11 and o, respectively. Find the mean performance measures at each node.

Solution:

It is easy to see that the nodes operate the same way and they can be considered as an
M/M/1/K queueing system. Hence the performance measures can be computed by using
the formulas with py = % and p; = %, respectively.

Furthermore, one can easily verify that

Us(D)p1 = Us(2)pa,

where Ug(7), i = 1,2 is the utilization of the server.
]

Exercise 9 Find the generating function for an M/M/n/n queueing system.

Solution:

n k n &
Gn(s) = SkQ—Po = (s0) e Py e = e—0(1=3) %—((n, SQ))
k=0 : k=0 n,e



To verify the formula let us calculate T.
Since N = G’y (1), therefore take the derivative, that is we get

iy o0 @y 0s)  ageP(n, 05)
Cxl) = e T Qg
hence
Gy(1) = 0 — 0B(n,0) = o(1 — B(n, 0)),

which was obtained earlier.
| |

Exercise 10 Find Var(N) for an M/M/n/n queueing system.

Solution:
Since Var(N) = E(N?) — (E(N))?, let us calculate first E(N?). That is

ZkQPk_Z (k—1)+ k)P, = Zk: —1Pk+Zk:Pk
k=1
—2

> A
:Zk(k,‘—l)HPo%—E Z Po+IE N)
k=2

=0*1 =P, — P,_)+E(N)=¢° (1 - P, (1 + E)) +E(N).
Since E(N) = o(1 — B(n, 0)), therefore

VWMO:fO—Bmmﬂ+gD—@ﬂ—MmmW+EWJ
o+n

= 0*(1 = B(n, o)( )) = (o(1 = B(n, 0)))* + E(N)

= 0* — 0*°B(n, 0) —noB(n, o) — 0> — 0*B*(n, 0) + 20°B(n, 0) + E(N)
=E(N) + 0°B(n, 0) — noB(n, 0) — 0*B*(n, 0)

=E(N) — 0B(n, 0)(n — o(1 — B(n, 0)))

=E(N) = 0B(n, 0)(n — E(N)).

Exercise 11 Show that B(m,a) is a monotone decreasing sequence and its limit is 0.

Solution: ( )
aB(m—1.a a
B - @) @
(m, a) m+aB(m—1,a) m

Y

and thus it tends to 0 as m increasing. The sequence is monotone decreasing iff
B(m,a) — B(m —1,a) < 0,Ym
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that is

aB(m —1,a)
m+aB(m —1,a)
B(m—1,a)(a —m —aB(m —1,a))
m+aB(m—1,a)
a—m—aB(m—1,a) <0
a—m

B(m—1,a) >
(m—1.a) > ==,

—B(m—1,a) <0

<0

which is satisfied if @ < m. Since 1 > B(m — 1,a) > 0 therefore 1 > = > 0, and thus
a > m,m > 0, that is 0 < m < a. It means that B(m,a) is monotone decreasing for m
which was expected since as the number of servers increases the probability of loss should
decrease.

n

Exercise 12 Find a recursion for C(m,a).

Solution:
Let a = ﬁ, then by the help of

we should write a recursion for C'(m, a) since B(m,a) can be obtained recursively. First
we show how B(m—1, a) can be expressed by the help of C(m—1, a) and then substituting
into the recursion

aB(m —1,a)

B —
(m, a) m+aB(m —1,a)

we get the desired formula. So let us express B(m,a) via C(m,a) that is

mB(m,a)
m — a(l — B(m,a))

C(m,a) =

C(m,a)(m —a) + C(m,a)aB(m,a) = mB(m,a)
thus
(m —a)C(m,a)

B(m,a) = m — aC(m,a)

Y

which is positive since m > a is the stability condition for an M /M /m queueing system.
This shows that

B(m,a) < C(m,a),

which was expected because of the nature of the problem.
Consequently
(m—1—-a)C(m—1,a)

Bm —1,a) = m—1—aC(m—1,a)’
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and m — 1 > a is also valid due to the stability condition. Let us first express C(m, a) by
the help of B(m — 1, a) then substitute. To do so

aB(m—1,a) amB(m—1,a)
C( ) o m+aB(m—1,a) m o m+aB(m—1,a)
m,a) = aB(m—1,a) ) o a(m—l—aB(m—l,a)—aB(m—l,a))

m— a(l " m+aB(m—1,a) m = m+aB(m—1,a)
aB(m —1,a) B aB(m —1,a)

" m+aB(m—-1,a) —a m—a(l—B(m-1,a)

Now let us substitute C'(m—1, a) into here. Let us express the numerator and denominator
in a simpler form, namely

(m—1—-a)C(m—1,a)

NUM =
¢ m—1—aC(m—1,a)

DENOM:m—a(l _(m—1-a)C(m — M))

m—1—aC(m—1,a)
m—1—aC(m—1,a) — (m—1)C(m—1,a) +aC(m — 1,a)
m—1—aC(m—1,a)
(m—-1)(1—-C(m—1,a))
m—1—aC(m—1,a)
m(m — 1) —maC(m —1,a) —a(m —1)(1 = C(m — 1, a))
m—1—aC(m—1,a)
m(m—1) —a(m —1) —aC(m —1,a)
m—1—aC(m—1,a)
(m—1)(m —a) —aC(m —1,a)
m—1—aC(m—1,a) '

=m-—a

=m-—a

Thus
alm—1—a)C(m—1,a)

(m—1)(m —a) —aC(m —1,a)’

C(m,a) =

and the initial value is C'(1) = a. Thus the probability of waiting can be computed re-
cursively. It is important because the main performance measures depends on this value.

Now, let us show that C'(m,a) is a monotone decreasing sequence and tends to 0 as m,
increases which is expected. It is not difficult to see that

alm—1—a)C(m—1,a)
(m—1)(m—a)—a

C(m,a) <

and if we show that
alm—1-—a)

(m—1)(m —a)a <1

then we have
C(m,a) < C(m —1,a).
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To do so it is easy to see that

am—1—a)<(m—1)(m—a)—a
m?>—m—ma+a—a—am+a+a® >0
m? — (1 +2a)m+a+a* >0
1420+ /(14 2a)? —4(a® + a)

mio = 9

1+ 2a++1+4a? + 4a — 4a2 — 4a
miyo = 5

1+2a+1
M=

that is if m > a + 1 then the values of the parabola are positive. However, this condition
is satisfied since the stability condition is m — 1 > a.
Furthermore, since
B(m,a)
1—-2(1—-B(m,a))

C(m,a) =

therefore lim,, o, C(m,a) = 0, which was expected.
This can be proved by direct calculations, since

m

0 m
C = — P,
and from .
lim Py(m)=e¢, lim & = 0,
M—00 m—oo m!m — o

the limit is 0. It is clear because there is no waiting in an infinite-server system.
]

Exercise 13 Verify that the distribution function of the response time for a M/M/r
queueing system in the case of r = 1 reduces to the formula obtained for an M/M/1
system.

Solution:
1 — g Hr=1-0)z 1 — eter
P(T>z)=e* <1 + C(n, 0) ‘ > =e M (1 + Q—e)
r—1—op —
= M1 — 1 + ™) = emHl1-0)T,
Thus
Fr(z) =1 — e 1=,
"

Exercise 14 Show that lin} Gn(z) =1 for an M/G/1 queueing system.
2=

127



Solution:

. . z—1 0
lim G (2) = lim (1 = p) Ls(A = Az) - — Ls(A—Xz) 0

therefor the L’Hospital’s rule is applied. It is easy to see that

z—1 1 1

=i
92— Lg(A—Az) a1 L+ AD(A—Az)  1—p’

and thus

z—1 _1—,0_1

i Gv(2) = lim (1 = p)Ls(A = Az) - lim —— LsA—Xz) 1—p

Exercise 15 Show that if the residual service time in an M/G/1 queueing system is

denoted by R then its Laplace-transform can be obtained as Lg(t) = %&Sﬂ.

Solution:

Using integration by parts we have

1 fiin)] . 7 e (<f(x),, _ 1= Ls(t)

La(t) = {_ I E©) -

t E(S) . tE(S)
Verify the limit ling Lg(t) =1.
—
It is easy to see that
1—Ls(t) 0O

g Le(t) = lim —gre= = 5

therefore apply the L’Hospital’s rule. Thus

iy o) =By 55 = 55 = -

Exercise 16 By the help of Lg(t) prove that if S € Exp(u),
then R € Exp(p).
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Solution:

1—-Lg(t) 11—
Lr(t) = ) _ zwt - uljrt’
1%

thus R € Exp(u).

Exercise 17 By the help of the formulas for an M /G /1 system derive the corresponding
formulas for an M /M /1 system.

Solution:

In this case
L

:m7

therefore the Laplace-transform of the response time is

Ls(t)

Lr(t) = Ls(t); —tA(lJr )\pL>S(t)
_ ko (1 —p)
Pt — A4 2
_p t1—p)(p+1)
At put 12— A — M+ A\
twu=A) — p=x  udl-—p)

9

Ttt+p—N) t+tp—-x u(l—p) +t

that is T' € Exp(u(l — p)), as we have seen earlier.

For the generating function of the number of customers in the system we have

_ (1—p)A—2)
GN(Z) _LS<)\_)\Z)LS()\—)\2)—Z
__on (=p-=2
A=Az +4pu ATAZ%M_Z
_ 7 (A =p)A=2) A=Az +p)
A=Az H4pu = Az + A22 — pz
p(l—p)(1 —2) p(l—p)  1-—p

p(l—2)=Xz(1—2) p—Xz 1—pz

as we proved in the case of an M/M/1 system.
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For the mean waiting and response times we get

W_pIE(S).l—i—Cg_ p1+1 p
l—p 2 p(l=p) 2 pl—p)
—_ — 1 1 p 1
T:W+—:—(—+1) =—
po p\l-p u(1—p)

To calculate the variance we need

3(1-p) 1- 1—p)
. 0? N 22 20p% + 2X(1 — p)
(L =p)*  pP(l—p) PP (1= p)?
2020 2)
(1= p)? (1= p)*’

thus

Var(W) = Mg(fi P2 (u(lp— p)>2

2=t 2X=Xp  (2-p)p
B(=p)?  p@31l-p)?  pA(l-p)?

as we have seen earlier.

Furthermore

Var(T) = Var(W) + Var(S) = 2=plp + (%)2

C2p—pPH+1-2p+p% 1 _( 1 )2
(1= p)? 2(l—p2 \ul-p))
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The variance of the number of customers in the system is

ME(S3)  (XE(S2)\? A3 — 2p)E(S2?)
3-p) (2(1 - p>) 2(1 -

p)
N2 A22\" 23-2p)2
= +<—fp)> +¥+p<1—p)

Var(N) = +p(1—=p)

3(1— p) |\ 2(1 2(1-p)
+(1 ) 3_20)+p(1—p)

L=p
4
p*(3 = 2p)
+ + +p(1—p)
1—p (1—p) 1—p

_ 2 =p) (= p)B=2p)  p(1=p)

(1—p)? (1—p)?
~20° = 2p" 4+ p* +3p7 = 20 = 3p% + 2p" + p + 3p° = 3p* — p*

(1= o)

(1—p)*

as we have seen earlier.

Finally

)\Q]E

3E 3 2]E 2
Var(Q) = )\ S?) ()\ S

)\3 3' )\2 2
0>

p! p)p +pt+ (1 - p)

—+ =
1—p (1—p) 1 ’ (1—p)?
208 =2+ p' +p = p _pP =+ _ P +p—p)
(1—p)? (1—-p)? (1—-p)?

These verifications help us to see if these complicated formulas reduces to the simple ones.

Exercise 18 Based on the transform equation

1—2

Gn(z) = Ls(A = Az)(1 - P)LS()\ —X2)— 2z

find N-t.

Solution:
It is well-known that N = G’ (1), that is why we have to calculate the derivative at the
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right hand side. However, the term W takes an indetermined value at z = 1 hence
the L'Hospital’s rule is used. Let us ﬁrst &eﬁne a function

IEEEZLELEE
Hence one can see that
Lg(A— A\
Lu(e) = (1= p EE2

Applying the expansion procedure

0 k k
Ls(A—Az) =1+ Z ES)A—)\z)’“

we have

0 k]E k
1—1—2 ) )x—)\z)k—z

1—2
E(S?)(1 - 2)
#_1_

f(z) =
=1—AE(S) + \?
Thus f(1) =1 —p and f/(1) = —2E&0,

After these calculations we get

I(2) = (1= p)f(2)Ls(A = Az)(=A) = Ls(A — Az) - f'(2)
(f(2))?

and hence

_(@=p)f(MA E(S) + 2EE)

(1—p)?

BEEDICENIEES =Y
(1—-p)?

A2E(S?) P 1+C2

2i—p PTiZ, T2

which was obtained in a different way.
]

Exercise 19 Find Var(W) by the help of Ly (s) = %AL”;()

132



Solution:
Let us define a function

f(s) = s—A +S)\LS(S)7
which is after expansion can be written as
A A B A A o E(SY)
=1—-)E(S) + )\E(252>s — )\Eé'S?’)sZ +
Therefore
AE(S? 20\E(S3 SAE(S4
pio= ) _2EE) P .,
£ (s) = _2)\]E3(!S3) N 3- 2);1]1;1(54)
Hence
F0)=1-p
AE(S?
(o) = 22
AE(S3
() = )
Consequently, because
1_
L) = 7y
we have
Liuls) =~ = )b
Fiy (o) = —(1 - LU 210D
Thus
0)  (1-p)20
(V) = ~Lin(0) = (= ) pfs =
~OAE(S?) pE(S) 14 C3
T 21-p) 1-p 2
Similarly

BV — 1 (0) — —(1 - ! QU O ~270)((0)

(o)
e () o0 - ) ()
- (1—p)!
— 2(BW)? + 5

133



Thus

— AN+ 5~ B0
— B0V + 37

Finally

Var(T) = Var(W + 8) = Var(W) + Var(S).

Exercise 20 By using the Laplace-transform show that

Sk—i—l)
E(RF (—
(%) = (k+1DE(S)
Solution:
As we have seen earlier
B 1— LS(S)
Lr(s) = —Fg)

and it is well-known that

Thus for Lgz(s) we get

Therefore

—~ Kk sE(S)
(DR
1— sz - E(s")
_ =1
B sE(S)
= (—1)FE SkH) . N (=1)F E(Sk+1)
_k:1 T+ DE®S) ° _H;
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Consequently

E(sk—i—l)

]E(Rk):m, =1,2,...

Exercise 21 Find the generating function of the number of customers arrived during a
service time for an M /G /1 system.

Solution:
By applying the theorem of total probability we have

[e'e) /\ k
P(va(S) =k) = / %e’\xfg(x) dx.
O .
Hence its generating function can be written as

* (\x)¥ A (2
Guas)(2) =Zk/0 (;) e fs(x) dl“:/o > (Zk:f)
k=0

= /OO e fo(z) do = /OO e 212 fo(x) do = Lg(A(1 — 2)).
0 0

k

e fo(x) da
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Chapter 5

Finite-Source Systems

Exercise 22 If P(k,\) = ’\k—l;e_’\ and Q(k,\) = Zf 0 ,e"\, then show the following

important formula

k
ZP _jaal jaaQ):Q(k7&1+a2)-
7=0

Solution:
It is well-known that

therefore

k k—j oo . j 0o k 00 tk
Z @ " e—al/ i‘e—ydy:/ %e—mw) dy:/ Ee—tdt:Q(k,aﬁaQ),
! a VE as . a .

1ta2

where we introduced the substitution ¢t = y + a4.
]

Exercise 23 Find the mean response time for an M /M /1/n/n queueing system by using
the Laplace-transform.

Solution:

It is well-known that T = —L/.(0), that is why let us calculate L/.(0).
!/
( K > eiQ(n_L“JAF)
J Q(n—1,%)
(Y ) QR (Y @y
pts Q(n—1,%) pts Q(n—1%)
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Thus

, 1 n 1
L(0) = — +X—XB(n—1,§> = —=+ $Us(n—1),
and hence
— n  Usg(n—1)
T(n) = — —
(n) . 3
Since
— 1 —
T(n)= ;(N(n—l)—l—l)
:l(n—l—US(n_D—l—l)
1 p
. 2 _ US(TL— 1)
= : ,

which was obtained earlier. The higher moments of T'(n) can be obtained and hence
further measured can be calculated.

Similarly, the moments of W (n) can be derived.

=

Exercise 24 Find the mean response time, denoted by TA, for an M/M/1/n/n system
by using the density function approach.

Solution:
L=l
A
T: 1 /a:u(ﬂx—i_'z) (;wc-i—z)dx
Q(n—lz)o (n—1)
B e~ % 7 n—1 (qu)k peg 1—k g
CQ(n—1,2) o El (n—1—k)! ’
9 k=0
—z n—1 n—1—k i k
: : (),
Q(n—l,z)kz_% (n—l—kz)!/:w e
= 0
B e ? nzi 21k kE+1
Q(n—l,Z) en—1-kK! n
= 1 k —z
u Q(n — 1 Qn—1,2)

:lzkzlPk(n—l):%(N(n—l)nLl).

The mean waiting time can be obtained similarly, starting the summation from 1 and
taking a Erlang distribution with one phase less.
]

138



Exercise 25 Find Var(N) for an M/M/1/n/n system.

Solution:

Let us denote by F' the number of customers in the source. Hence F'+ N = n, and thus
Var(N) = Var(F).

As we have proved the distribution of F' equals to the distribution of an M /M /n/n system
with traffic intensity z = /l) we have

Var(N) = % (1 - (” %)) ) %B (" %) ("_% (1 7 ("%)))

Us 1—U5( U5>
=— — n——].

If the number of sources is denoted then this formula can be written as

Var(N(n)) = Uin) - Zs(”) (n — @) :

This result helps us to determine Var(T'(n))-t and Var(W(n))-t. Since W(n) can be
consider as a random sum, where the summands are the exponentially distributed service
times with parameter p, and the counting process is the number of customers in the
system at the arrival instant of a customer, denoted by Nﬁln), we can use the formula
obtained for the variance of a random sum, namely

Var(W(n)) = E(NJ) - %; %far(N,S”))
_ Nl(n 1) gVar(Nn —1)
=z =1+ Var(N(n - 1))),
where
N(n—1):n—1—w
Var(N(n — 1)) = Us("p_ D _1- Us;)” L) (n - w> .

Similarly, since T'(n) = W(n) + S, then

Var(T(n)) = Var(W(n)) + —.
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Part 111

Queueing Theory Formulas
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Chapter 6

Relationships

6.1 Notations and Definitions

Table 1. Basic Queueing Theory Notations and Definitions

a Server utilization.
a; Utilization of component i in a queueing network.
Alt] Distribution function of interarrival time. A[t] = P[r < {]
b Random variable describing the busy period for a server
Ble, pl Erlang’s B formula. Probability all servers busy in M/M/c/c system.
Also called Erlang’s loss formula.
c Number of servers in in a service facility.
Cle, pl Erlang’s C formula. Probability all servers busy in
M/M/c/c system. Also called Erlang’s delay formula
C% Squared coefficient of a Varia[ti(in of a positive
_ 9 VarX
random variable, C5 = E[X
D Symbol for constant (deterministic) interarrival
or service time.
Ey, Symbol for Erlang-k distribution of interarrival or service time.

E[Q|Q > 0] Expected (mean or average) queue length of nonempty queues.
E[W|W > 0] Expected queueing time.

FCFS First Come First Served queue discipline.

FIFO First In First Out queue discipline. Identical with FCF'S.

Fr(t) The distribution function of T', Fr(t) = P[T < t].

Fw(t) The distribution function of W, Fy, (t) = P[W < t].

G Symbol for general probability distribution of service
time. Independence usually assumed.

GI Symbol for general independent interarrival time
distribution.

Hy Symbol for two-stage hyperexponential distribution.
Can be generalized to k stages.

K Maximum number of customers allowed in queueing
system. Also size of population in finite population
models.
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Table 1. Basic Queueing Theory Notations and Definitions (continued)

A Mean arrival rate of customers into the system.

A Actual mean arrival rate into the system, for which
some arrivals arc turned away, e.q., the M/M/c/c system.

Ar Mean throughput of a computer system measured in
transactions or interactions per unit time.

In-) Natural logarithm function (log to base €).

N, Expected steady state number of customers receiving
service, E[N].

LCFS Last Come First Served queue discipline.

LIFO Last In First Out queue discipline.

Identical with LCFS.

M Symbol for exponential interarrival or
service time.

W Mean service rate per server, that is,
the mean rate of service completions
while the server is busy.

Lhas b Parameters of the two-stage hyperexponential
distribution of it? for the M/H,/1 system.

N Expected steady state number of customers
in the queueing system, E[N].

Nt Random variable describing the number of

customers in the system at time t.

N Random variable describing the steady state
number of customers in the system.

N, Random variable describing the number of customers
served by a server in one busy period.

N [t] Random variable describing the number of
customers receiving service at time t.

Ny Random variable describing the steady state number of
customers in the service facility.

O Operating time of a machine in a machine repair queueing model.
The time a machine remains in operation afler repair
before repair is again necessary.

P,[t] Probability there arc n customers
in the system at time ¢.

P, Steady state probability that there are
n customer in the system.

PRI Symbol for priority queueing discipline.

PS Symbol for processor sharing queueing discipline.

Di A parameter of a hypoexponential random variable.

T, Tp Parameters of the distribution function
of w for the M/H,/1 queueing system.

x|r] The rth percentile for random variable X.

Q Random variable describing the steady state

number of customers in the queue.
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Table 1.

Basic Queueing Theory Notations and Definitions (continued)

|

W/

=

Random variable describing the number of

customers in the queue at time .

p = AS The traffic intensity or offered load.

The international unit of this is erlang,

named for A.K. Erlang, a queueing theory pioneer

Symbol for queueing discipline "random selection for service".
Random variable describing the service time. E[S] = i
Expected customer service time, E[S] = i

Symbol for service in random order, which is identical to RSS.
It means each customer in queue has the
same probability of being served next.

Random variable describing the total time a customer
spends in the queueing system, T'=W + S.

Expected steady state time a customer spends
in the system, T = E[T] = W + S.

Random variable describing interarrival time.

E[r] = 1.

Random variable describing the time a customer
spends in the queue before service begins.

Random variable describing time a customer who must
queue spends in the queue before receiving service.
Also called conditional queueing time.

Expected steady state time a customer
spends in the queue, W = E[W] =T — S.

6.2 Relationships between random variables

Table 2. Relationships between Random Variables

a

N=0Q+ N,
N=X-T
N,=X-8
Q=X-W
T=W+1S
T=W+3§

Server utilization. The probability

any particular server is busy.

Number of customers in steady state system.
Mean number of customers in steady state system.

This formula is often called Little’s law.
Mean number of customers receiving service

in steady state system. This formula

sometimes called Little’s law.
Mean number in steady state queue.

Also called Little’s law.
Traffic intensity in erlangs.

Total waiting time in the system.
Mean total waiting time in steady state system.
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Chapter 7

Basic Queueing Theory Formulas

7.1 M/M/1 Formulas

Table 3. M/M/1 Queueing System

p=\AS, P,=P[N=n]=(1-p)p", n=01,....

—~ o P _P(L+p—p?)
Q—)\W—l_p, Var(@)—w.

EQIQ> 0= . VarlQlo> 0=

Fr(t) = P[T < f] = 1 — exp (%) PIT > ] = exp (%)

_ S 1 —9
T =E[T] = = . Var(T)=T".
7] L—p  w(l-p) 1)
[r] =T1 100 [90] = T'In 10 [95] = T'In 20
|| = n 100 — s = n s s = n
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— 100
Twlr] = maX{Tln (100 —pr> : O}.

7w [90] = max{T In(10p),0}, mw[95] = max{T In(20p),0}.

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MM1/MM1.html
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7.2 M/M/1/K Formulas

Table 4. M/M/1/K Queueing System

(L—p)p" .
=iy TAFH
P, =
1 .
ki1 A

n=0,1,..., K, where p = \S.
A= (1— Pg))\, Mean arrival rate into system.

p[l — (K + 1)p" + Kp™*1]

ha A #
o 1— p)(1 — pE+1
N N (I
K
_ P
Q=N-(1-F), II,=—"-n=0,1,..., K — 1.
1— Py
K—-1
Fr(t) =13 1,Q[n: ],
n=0
where
. _ -t - (Nt)k
Q[naﬂt]_eﬂz k! '
k=0
7Y w_¢
A A

K-2
FT(t) =1- Z Hn+1Q[n,,ut]
n=0

W
EWIW >0 = ;=5 a=(1-Pop

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MM1K/MM1K.html
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7.3 M/M/c Formulas

Table 5. M/M/c Queueing System

— p_ p° - (I —a)P[N > ¢
-|Ehm) - |

— 1—a pe
p—Po, ifn<e
n!
P, =
P —PF,),, ifn>c
clen—e
( [c—1 P pc
P e if
0 k:nk‘+c!(1—a)] itn <ec,
PN >n] = )
aca ¢ e
\PO a0 —a) = P[N > cla ifn>c
—~ ~ o _ pPIN >
=\
where
P
PIN > ] = Cle, ) = -
P prope
1-F L
( 0)2 n!
C 1 —aC
Var(@) - “Cleplll +a— aCle.p])

(1—a)?
N=\T= @—l—p.
Var(N) =Var(Q) + p(1+ P[N > ).

W] =1—P[N >¢], Fr(t)=1— P[N > c|exp[—cut(l — a)],
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Table 5. M/M/c Queueing System (continued)

2~ Cle. A)CLe. 5"
Var(W) = 02%— A .C[ |
100C ¢, p
mw[r] = max{0, (1) In < 100 — 7 )}
mw[90] = max{0, ﬁ In(10C[e, p)) }-
S

mw[95] = max{0,

A—a) In(20Cc, p)) }-

— —ct(l —
WW/:P[W§t|W>O]:1—eXp(%>, t>0.

Ul

E[W|W > 0] = E[W'] =

vmmmW>m:(TE—ﬁ%

c(l—a

1+ Cre ™ 4 Coert0=0) if p£Lc—1
Fr(t) =
1—{14+Cle,plput}e ™ ifp=c—1
where
PIN > (]
o= =d
YTl—c(l—a)
and
P[N > (]
Cs (1—a)—1
T=W+S

PIN > d[1 - (1 — )5

(p+1—0c)?(1 —a)?

+25% ifpAte—1

2{2PN>6+1}S ifp=c—1

Var(T) =E[T? - T".

7r[90] = T + 1.3D(T), 7r[95] ~ T + 2D(T) (estimates due to James Martin).
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMc/MMc.html
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7.4 M/M/2 Formulas

Table 6. M/M/2 Queueing System

P,=2FPad", n=1,2,3,...

2a™

P[N >n| = , n=12 ...
1+a

— 2a°

Q=AW=

PN > 2] = C[2, p] is the probability that ail arriving customer
must queue for service. P[N > 2| is given by

2a?

1+a

PIN 2 2] = C[2,p] =

2a%[(1 + a)? — 2a%]
(1 —a?)?

Var(Q) =

— = = = 2a

Var(N) =Var(Q) + 201 +a+ 2a2).

1+a

— 1 — 2a2
W[O]: +a a

1+a
Fe(t) =1 - 2 expl-2ut(1 - a)
T(t) = T exp[—2u a
— a?S
W = .

1 —a?

21 EPAYS]

Var(W):a( +il @)s

S 200a?
mwlr] = max{0, 775 dn ((100 — 1+ a)) b
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Table 6. M/M/2 Queueing System (continued)

mw[90] = max{0, 2(1§_ S (20a2 ) 1.

1+a
S 40a”
mw[95] = max{0, 30— In (1 n a) }.
— —2t(1 —a)
W = PIW < (W > 0] =1 —exp (——z—= ). 1>0
, S
EW|W > 0] =E[W'] = .
2(1—a)
5 2
VarlW|W > 0] = (2<1 — a)) :
1+ 1_—ae*’“‘t + 2—a2672“t(1’“) where p # 1
1 —a?—2a? 1—a—2a?
Fr(t) =
pt —ut _
1—{1—{—?}6 where p =1
S S
T = = .
W+S [
a?[1 — 4(1 — a)?|5" .
125" ifp#£1
E[T?] = (2a —1)(1 —a)(1 —a?)
10—
§OS2 ifp=1

=2

Var(T) =E[T?] -T".
7r[90] = T 4+ 1.3D(T), 77[95] ~ T + 2D(T)

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MM2/MM2.html
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7.5 M/M/c/c Formulas

Table 7. M/M/c/c Queueing System (M/M/c loss)

p=AS

T

P

P, = Qn! - n=0,1,... ¢
1+p+p—+...+%

2!

The probability that all servers are busy, P, is
called Erlang’s B formula, Blc, p|, and thus

|
B[C7 p] = pQC‘ pc'
1+p+§+...+g

X = A(1 — Blc, p]) Is the average arrival rate of customers who

actually enter the system. Thus, the true server utilization, a,
is given by

All of the formulas except the last one arc true for
the M/G/c/c queueing system. For this system we have

Fr(t) = Fs(t).

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcc/MMcc.html
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7.6 M/M/c/K Formulas

Table 8. M/M/c/K Queueing System

p=AS

c n chc n -1
)

n=0 ¢ n=1 ¢

PRy ifn=1,2. ¢
Pn: ) n—c

p_<g> Py ifn=c+1,.... K.

c \c

The average arrival rate of customers who actually
enter the system is A = (1 — P).

The actual mean server utilization, a, is given by:

AS
a=—"-:
CCP
A PTlo K—ct+1 _ _ K—c
Q_c!(l—r)2[1+(K o)r (K —c+ 1)r"],
where
_P
r=-.
c
c—1 c—1
N:Q+IE[NS]:Q+ZnPn+c<1—ZPn>.
n=0 n=0
By Little’s Law
— Q — N
W:g7 T::
A A
P,
IL, = - =0,1,2,..., K — 1,
1— P
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Table 8. M/M/c/K Queueing System (continued)

where II,, is the probability that an arriving customer who
enters the system finds n customers already there.

EW|W > 0] =

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcK/MMcK.html
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7.7 M/M /oo Formulas

Table 9. M/M /oo Queueing System

p=AS.
Pn:p—'e_'”, n=0,1,....
n!

Since N has a Poisson distribution,
N=p and Var(N) = p.

By Little’s Law

>~ =

T=—=2S.

Since there is no queueing for service,

W:

Ql

=0,

and
Fr(t) = P[T < t] = Fs(t) = P[S < {]

That is, T" has the same distribution as S.
All the above formulas arc true for the M/G /oo system, also.

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMinf/MMinf .html
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7.8 M/M/1/K/K Formulas

Table 10. M/M/1/K/K Queueing System

The mean operating time per machine (sometimes called the
the mean time to failure, MTTF) is

The mean repair time per machine by one repairman is

— 1
S =
L

The probability, F,, that no machines arc out of service is given by

K = k™
K S
b= mm (gay) | = v
where B[-, -] is Erlang’s B formula and
E[0]

S

Then, P,, the probability that n machines arc out of service,
is given by

K
P,=——2"h, =0,1,..., K,
(K—nt~ "0 "
The formula for P, can also be written in the form
ZK—n
_ |
PHZM, n=0,1,..., K.
Kk
z
>
k=0
CL:]_—P(].
=2
S
— K
A
N=M\T.
W=T-5
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Table 10. M/M/1/K/K Queueing System (continued)

zK—n—l
K —n)P, ")
m, = K= :(KK_? Do ot K1,
K-N _k
Kl
k=0

where II,, is the probability that a machine that breaks down
finds n machines in the repair facility.

QUK — 12 +1tp)

Frit) =PIT<tl=1-— t>0
T() [ —] Q(K—LZ) ) - Y
where

no_k

N

Q(n;z) = e T

k=0

K —2: t

Pﬂwszv<ﬂ—1—Q( 2+ i) t>0

QIK—1;2) =~ — 7

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MM1KK/MM1KK.html
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7.9 M/G/1/K/K Formulas

Table 11. M/G/1/K/K Queueing System

The mean operating time per machine (sometimes called the the mean time to failure,
MTTF) is

E[O] é

The mean repair time per machine by one repairman is

— 1
S==.
0

The probability, F,, that no machines arc out of service is given by

a:]_—P().
=2

S
_ K

A
N=\-T
W=T-25
Q=\-W

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMHyper1KK/MHyper1KK.html
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7.10 M/M/c/K/K Formulas

Table 12. M/M/c/K/K Queueing System

The mean operating time per machine (sometimes called the the mean time to failure,
MTTF) is

E[0] =~

The mean repair time per machine by one repairman is

— 1
S =
L

The probability, F,, that no machines are out of service is given by

c K -1
K\ _, KoK\ _,
Poz E (k)z + E C!Ck__c(k)z ] s
k=0 k=c+1
where
E
-

S

Then, P, the probability that n machines are out of service is given by

P = (5)Z_npo n:0717”-7ca
Tl = (M) P n=c+1,... K

Ql

I
(1~
£

|
o
<U

n=c+1
W Q(E[O] iS).
K-Q
i— K
 E[O]+W +8
7- 5 g
A
N=\T.
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Table 12. M/M/c/K/K Queueing System (continued)

I, - (K—n)_Pn,
K—N

where II,, is the probability that a machine which breaks down finds n inoperable ma-
chines already in the repair facility. We denote II,, by II,,[K] to emphasize the fact that
there are K machines. It can be shown that

M,[K]=PJ[K-1], n=01,...,K—1.

cp(K—n—1;¢2)
' p(K —1;¢z2)

PJK —1] = Pl — 1,

where, of course,

ak

p(k;a) = e

—Q

QK —c—1;¢c2)P[K — 1]

Frt)y=PW <t]=1- TR Tc2) ,

t>0

I

where

Fo(t) = PIT < 1] = 1 — Cyexp(—t/T) + ¢, 2B — e = Liclz+ )

QK —c—1;¢z)
t >0,
where C; =1+ Cy d27s
cO(K —c—1:
Cy CRIK —c—Licz) P[K —1].

- dle—1)(K —c—1)Ip(K — 1;¢2)

The probability that a machine that breaks down must wait for repair is given by

K-1 c—1
D:Zanl—ZHn.
n=c n=0

w
E -
WIW > 0] = =

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcKK/MMcKK.html
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711 D/D/c/K/K Formulas

Table 13. D/D/c/K/K Queueing System

The mean operating time per machine (sometimes called the the mean time to failure,
MTTF) is

E[0] — é

The mean repair time per machine by one repairman is

51
1
) K
a = min{1, (1—|—z)}’
where
.- ElO
S
- ca
)\: - =
cap 5
— K
A
N=\T
W=T-5
Q=\W.

The equations for this model are derived in "A straightforward model of computer
performance prediction" by John W. Boyse es David R. Warn in ACM Comput. Surveys,
7(2), (June 1972).

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/DDcKK/DDcKK.html
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7.12 M/G/1 Formulas

Table 14. M/G/1 Queueing System

The z-transform of IV, the steady-state number of customers in the system is given by:

p)(L—2)S" AL~ 2)]
STIAN1—2)] -2z

Y

Gn(z) = ipnz” = (1-

where S~ is the Laplace-Stieltjes transform of the servide time S. The Laplace-Stieltjes
transforms of T" and W are given by

0— XN+ A\S [0]
dz”s
W) = — =
0— XN+ A\S [0]

Each of the three transforms above is called the Pollaczek-Khintchine transform equa-
tion by various authors. The probability, Fy, of no customers in the system has the simple
and intuitive equation Py = 1 — p, where the server utilization p = AS. The probability
that the server is busy is P[N > 1] = p.

W = 2)(\15![5/1) = 1'0_5[) <1 +2CS) (Pollaczek formula).
Q= \W.

_ NE[SY] NE[S2]\?  A2E[S?]
V@ =305+ (3p)) "3
E[W|W > 0] = fp (1 +205>.
E[W?] = 2W" + ;(If"[_sp])

N=X-T=Q+p.

A3E[S9] ANE[S2]\?  M2(3 — 2p)E[SY]
Vart) =50 —p) (2(1—@) gy )
E[T?) = E[W?] + %.
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Table 14. M/G/1 Queueing System (continued)

=2

Var(T) =E[T?] -T".

mr[90] = T + 1.3D(T), 77[95] ~ T + 2D(T).
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Table 15. M/H,/1 Queueing System

The z-transform of the steady-state number in the system, N, is given by

where z; and zy are the roots of the next equation

a1a22* — (ay 4+ ag + arag)z + 1+ a; +ay —a =0,

where
a=M\S,
a; = i, 1=1,2,
25
o — (z1 — 1)(1 — az)
1 21 — 29 )
and
- (22— 1)(1 — azl).

Z2 — 21

From Gy (z) we get
P,=Ciz;"+ 02", n=0,1,...

Specifically, P, =1 — a.

an+1 an+1
fﬂAIEjn —»CH 1 —-C& 2
Zl—-l 22——1
Additionally,
PIN > 1] = a.

Fr(t)=PW <t]=1—Cse " — Cee™®, t >0,
where p = —(y, b = —(s, (3, (y are the solutions of the
6> + (,Ul + po — )\)9 + M1M2(1 — a) =0,

equation,
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Table 15. M/ H,/1 Queueing System (continued)

AL —a)G +a(l —a)ppe

O —
i PG =)
and
C A1 —a)G +a(l —a)ppe
’ p(G2 = G1)
W = 2)(\11}3[?2) = 1a,_Sa <1 +20‘% ) (Pollaczek-formula)

S [(1+C%
E[W|W>O]:1_a( 5 S).

E[W?) =2W" +

In this formula we substitute

6 6
E[S*] = 23 + 2,
H1 Ha

then

-2

Var(W) =E[W? - W".

Fr(t)=P[T <t] =1—me " —me ™ +>0,

where
21
Taqg = Cl
Z1 — 1
Z9
m = Ch ’
Z9 — 1
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Table 15. M/ H,/1 Queueing System (continued)

Ha = )‘(Zl - 1)7

and

where of course

2 2
E[s?) = 2L+ L2,
I2%] Ha

=2

Var(T) =E[T?] -T".

7 = E[_jj] — 1.

T
- - a? 1+C’§
Q:)\.Wzl—a( 2 )

_ NVE[SY] AE[S?\?  ME[S?
Var(Q) = 33— (2(1 - a)> 21 —a)

~ NVE[SY] ANE[S2]\?  A2(3 — 20)E[S?]
Var(N)_3(1—a)+(2(1—a)) + 20 —a) +a(l —a).

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MH21/MH21 .html

168



Table 16. M/Gamma/1 Queueing System

Since S has Gamma-distribution

E[S"]:6(6+1)"'(6+n_1), n=1,2,...

a?’l

Since

2 __
Cs =
SO

1

/8’

E[S?] = §°(1 + C2),

E[S] = 5°(1 + C2)(1 + 2C2),

and
1

E[s" =S" [ +kCS), n=12,. ..

=1

S

Ed

This time

W:

ME[S?]  aS [(1+C%
2(l—a) 1-—a 2 )
@:XW7

_a*(1+C%) a?(1+C%)  2a(1+2C3)
Var(Q) =54 = ai {1 2(1 — af e

S [(1+C%
E[W|W>0]—1_a< 5 S),

aS (14 C2)(1 4 2C2)
3(1—a) ’

Var(W) =E[W? - W,

E[W?] = 2~ +

T=W+S, N=X-T=Q+a,

a1+ C2)(1+2C2) (a2(1+0§))2 a2(3—2a)(1+03)+a(1_a).

Var(N) = 3(1—a) 21— a) 21— a)
E[T?] = E[W?] + S(%rfg)

=2

Var(T) =E[T? - T".

mr[90] =~ T + 1.3D(T), 77[95] ~ T + 2D(T).
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MGammal/MGammal.html
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Table 17. M/Ej/1 Queueing System

Mivel S Since S has Erlang -k distribution, hence

E[S"] = <1+%> <1+%>...(1+”;1>§", n=12...

and
N5 (141 2
E[s’] =S (1+k> (1+k)
This time
—  JE[s?] &S [(1+4 ,
W = —a) 1—a < 5 ) (Pollaczek’s formula)
Q=X-W.
_d*(1+k) a*(1+k)  2a(k+2)

Var(Q) = opa—0) {1 (i—a) 3k }

8 (144
EW|W > 0] = 1_@( 5 )

=2

Imwﬂ:2wﬂ+a5“ﬂﬂxk+®

3k%(1 — a)

=52

Var(W) =E[W? - W".

T=W+S, N=XT=Q+

dd(k+1)(k+2) a?(3 —2a)(1+ 1)
Var(N) = 3k21—a ( 21— a) ) 21— a) = ta(l—a)
E[T?] = E[W? + S+ 1(1_2%).

Var(T) = E[T?] — T

mr[90] =~ T + 1.3D(T), 77[95] ~ T + 2D(T).

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MEk1/MEk1.html
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Table 18. M/D/1 Queueing System

Since S has a constant distribution
E[S"]=5", n=12,...,

SO

Gn(z) = (1—a)(1—2)

1 — zea(l=2) ~

We suppose that

|2e*1=9)| < 1,

we can expand G (z) in the geometric series
gn(2) = (1 —a)( 1—zi ““Z

This thime we can show that,

P =(1-a)(e"—1),

and

Po=(1-a)y T (ja)’znf_ 5])7 +n— j)e

where (k —1)S <t < kS

o

I

—
\'[\D
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Table 18. M/D/1 Queueing System (continued)

So,

W0 = P,

— aS

V=300

B[ WIW > 0] = 577
E[W?) = 2" 3 (fi 3

@:XWZQQ—@
a3 a? 2 a2
Var@) =3 * {2(1 - a)] 2(1—a)
0 if t<S,
Fr(t) = k:—lP p (143 3
bkS >
nX::O n+ k( S > Zf t_
where

a? &)Y+ﬁ@—w

LhNN):3ﬂ—a)+<M1—a 21— a)

+a(l —a).

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MD1/MD1.html
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7.13 GI/M/1 Formulas

Table 19. GI/M/1 Queueing System

The steady-state probability that an arriving customer will find the system empty, is
the unique solution of the equation 1—1IIy = A*[ully] such that 0 < I < 1, where A*[O] is
the Laplace-Stieltjes transform of r. The steady-state number of customers in the system,
N has the distribution {P,}, where Py = P[N =0] =1 —a, P, = ally(1 — II,)" !, n =
1,2,..., tovdz"bbdz”

N = i, and Var(N) = a2-lo—a)

I, 15
= (1 — Ho)a
Q= T,
Var(Q) = a(1 —1Ip)(2 _1%0 —a(1—1l))
BIQIQ > 0] = -
S
T = i

Fp(t) = P[T <t] =1—exp(—t/T).

— 100
HT[T’] =TIn lloo — T:| .

I17[90] = TIn10, TII7[95] = TIn 20.

= S

Var(W) = (1 —1I3) <HEO>2

Fr(t)=PW <t]=1—(1-1)exp(—t/T).

My [r] = max {O,Tln (%) }

W' the queueing time for those who must, has the same distribution as 7.
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Table 20. II; versus a for GI/M/1 Queueing System [[]

a

Es

Es

U

D

H,

H,

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
0.950
0.980
0.999

0.970820
0.906226
0.821954
0.724695
0.618034
0.504159
0.384523
0.260147
0.131782
0.066288
0.026607
0.001333

0.987344
0.940970
0.868115
0.776051
0.669467
0.551451
0.626137
0.289066
0.147390
0.074362
0.029899
0.001500

0.947214
0.887316
0.817247
0.734687
0.639232
0.531597
0.412839
0.284028
0.146133
0.074048
0.029849
0.001500

0.999955
0.993023
0.959118
0.892645
0.796812
0.675757
0.533004
0.371370
0.193100
0.098305
0.039732
0.001999

0.815535
0.662348
0.536805
0.432456
0.343070
0.263941
0.191856
0.124695
0.061057
0.030252
0.012039
0.000600

0.810575
0.624404
0.444949
0.281265
0.154303
0.081265
0.044949
0.024404
0.010495
0.004999
0.001941
0.000095

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/GIM1/GIM1.html

LAt the first Hy distribution p; = 0.4, p1 = 0.5), e = 3X. At the second H, distribution p;

0.024405, py = 2p1 A, dz7s po = 2po .
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7.14 GI/M/c Formulas

Table 21. GI/M/c Queueing System

Let II,,n = 0,1, 2, ... be the steady state number of customers that an arriving cus-
tomer finds in the system. Then

c—1 .

(=) ()0, n=0,1,...,c—2,
Hn — =n

Dw"=¢, n=c—1,¢c,...,

where w is the unique solution of the equation w = A*[cu(1 —w)] such that 0 < w < 1,
where A*[0] is the Laplas-Stieltjes transform of r,

gj:A*[]:u]? j:1727"'7c7

[ (;)

1—w ; C;(1 = 9) (Cc((llig‘ii :i))] )

and

U, = DC, Z b

j=n+1 Ci(1 =)

<C(1 —9) —J)

=0,1,...,c—1.
C(l_U))_])’ n (] , C
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Table 21. GI/M/c Queueing System (continued)

Fr(t) = P[W <t]=1— P[W > 0]e- =21 >0,

where

P[W>O]:%. W:%. E[W|W>O}:c(1—§w).

If ¢(1 —w) # 1, then
Fr(t) = Plw <t] =14 (G — 1)e ™ — Ge~(1=)t ¢ >,

where

D

G:<1—w)[1—c(1—w)]'

When ¢(1 —w) =1, then

Dut
1—w

FT(t):P[wgt]:l—[l—l— }e_’“, t>0.

We also have

T=W+S.

AS e 1 1

v
I

ASTIL, ;1

Moty = 1,2, c— 1,
n=cc+1,....
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7.15 M/G/1 Priority queueing system

Table 22. M/G/1 Queueing System (classes, no priority)

There are n customer classes. Customers from class ¢ arrive in a Poisson pattern with
mean arrival rate A\;,;7 = 1,2,...,n. Each class has its own general service time with
E[S;] = 1/, E[S?], E[S?]. All customers served on a FCFS basis with no considera-

(2
tion for class. The total arrival stream to the system has a Poisson arrival pattern with

The first three moments of service time arc given by

—_/\1 AQ )\n
S = SE[S)] + FEIS)] + ...+ TE[S)

An

A A
E[5°] = TE[S]) + TES3] + ...+ TE[S]],

and

A A An

E[S°] = ZLE[S?) + Z2E[S3] + ... + ZEE[S?),
A A A

By Pollaczek’s formula,

—  AE[S?]

W= 2(1 —a)’

The mean time in the system for each class is given by

The overall mean customer time in the system,

I VI Y A
T="22T7, + 2T, + .+

A A TT”‘

The variance of the waiting time

AE[S®]  N2(E[S?])?

VarW) =sa =3t Ji—a

The variance of T' is given by
Var(T;) = Var(W) +Var(S;), i=1,2,...,n.

The second moment of T" by class is

2

E[T?] = Var(T}) + T,

o 1=12...n
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Table 22. M/G/1 Queueing System (classes, no priority)
(continued)

Thus, the overall second moment of T is given by

A A A,
Eﬁﬂzﬁ@@ﬂ+fﬂﬁ}h”+jﬂmﬂ

and
—9

Var(T) =E[T?| - T".

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MG1NoPrio/MG1NoPrio.html
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Table 23. M/G/1 Nonpreemptive (HOL) Queueing System

There are n priority classes with each class having a Poisson arrival pattern with mean
arrival rate \;. Each customer has the same exponential service time requirement. Then
the overall arrival pattern is Poiisson with mean:

A=A+ XA+ + A,

The server utilization

S- %E[Sl] + %E[SQ] P %E[sn],
E[S?] = %E[Sf} + %E[SS] ...+ %E[Sﬁ],
and

E[S?] = %E[Sf] + %E[SS’] + .+ %E[sg],
Let

P = )\I]E[Sl] + )\Q]E[SQ] + ...+ )\jE[Sj], j = 1, 2, oo,
and notice that
Pn =P = AS.

The mean times in the queues:

_ - AE[S?]
Wil = 5= =—uy

=
é
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Table 23. M/G/1 Nonpreemptive (HOL) Queueing System

(continued)

The mean queue lengths are
GJIXJ-WJ, j:1727...7n.

The unified time in the queue

A A
W = TIIE[Wl] + TQE[WQ] o+

An
TE[W"]

The mean times of staying in the system

T; = E[T;] = E[W;] +E[S;], i=12,...,n,

and the average of the customers staying at the system is
N;=X-T;, j=12,...,n.

The total time in the system

T=W+3S.

The total queue length

.[/V7

I
>|

Q
and the average of the customers staying at the system
N=X\-T.

The variance of the total time stayed in the system by class

AE[S]
3(1 = pj—1)*(1 = pj)
AE[S2] (2 ijl ME[S?] — AE[SQ])
A1 = pj1)*(1 = p;)?
AE[S?] jii ME[S?]

2(1— Pj—;)3(1 —pj)’

Var(T;) = Var(S;) +

+

+ j=12...,n.
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Table 23. M/G/1 Nonpreemptive (HOL) Queueing System
(continued)

The variance of the total time stayed in the system

A — A —
Var(T) = SVar(Th) + T)] + F[Var(Ty) + T
An = =
o S Var(T) + T -T.
The variance of the waiting time by class

Var(W;) =Var(T;) = Var(S;), j=1,2,...,n.

We know that E[WJQ] = Var(W;) + W?, j=1,2,...,n,

SO

A A A,
E[W?| = TlE[Wf] + fﬂz[wg] + .+ 7E[W,f].
Finally

2

Var(W) =E[W? - W".

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MG1Relativ/MG1Relativ.html
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Table 24. M/G/1 absolute priority Queueing System

There are n customer classes. Class 1 customers receive the most favorable treatment;
class n customers receive the least favorable treatment. Customers from class ¢ arrive in
a Poisson pattern with mean arrival rate \;;t = 1,2,... n. Each class has its own gen-
eral service time with E[S;] = 1/u;, and finite second and third moments E[S?], E[S?].
The priority system is preemptive resume, which means that if a customer of class j is
receiving service when a customer of class ¢ < j arrives, the arriving customer preempts
the server and the customer who was preempted returns to the head of the line for class
j customers. The preempted customer resumes service at the point of interruption upon
reentering the service facility. The total arrival stream to the system has a Poisson arrival
pattern with

A=A+ X+ + A\

The first three moment of service time are given by:

A2 A

E[S?) = JUB(S7] + 2E[S3] + ... + 2E[s?)

E[S"] = JLE(S]] +

A2 s An B

Let

Pi = AlE[Sl] + )\Q]E[SQ] +...+ )\jE[Sj], j = ]_, 2, oy,
and notice that

pn:p:Ag-

The mean time in the system for each class is

S \E[S7

1
i ]
2(1 - pj)
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Table 24. M/G/1 absolute priority Queueing System

(continued)

Waiting times

The mean length of the queue number j:

O

=AW, j=1,2,....n

The total waiting time, W, is given by:

The mean number of customers staying in the system for each class is

j:)\joa j:1,2,...,n.

=]

The mean total time is

The mean number of customers waiting in the queue is

@:va

and the average number of customers staying in the system

N=XT.
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Table 24. M/G/1 absolute priority Queueing System

(continued)

The variance of the total time of staying in the system for each class is

E[S,] S AELS?

N VCLT(S]')
Varth) = G, 2 T -

S~ AE[SY o)
_|_ =1 (i:l )

30— (= py) 40— p; 121 = py)?

20 = pj1)* (X —py) 7

The overall variance

+

poz(), j:1,2,...,n.

Var(T) = %[V(M’(Tﬂ + Ti] + %[V&T(Tﬂ + T;]

An
A

2

to 4 D Var(T,) + T =T
The variance of waiting times for each class is
Var(W;) = Var(T;) = Var(S;), j=1,2,...,n.

Because,

EW? = Var(W;) + W3, j=12...,n,

SO

A A A,
E[W?] = XlE[WE] + fE[Wg] + .+ 7IE‘:[W,E].
Finally

-2

Var(W) =E[W? - W".

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MG1Absolute/MG1Absolute.html

184



7.16 M/G/c Processor Sharing system

Table 25. M/G/1 processor sharing Queueing System

The Poisson arrival stream has an average arrival rate of A and the average service
rate is . The service time distribution is general with the restriction that its Laplace
transform is rational, with the denominator having degree at least one higher than the
numerator. Equivalently. the service time, s, is Coxian. The priority system is processor-
sharing, which means that if a customer arrives when there are already n — 1 customers
in the system, the arriving customer (and all the others) receive service at the average
rate p/n. Then P, = p"(1 —p), n=0,1,..., where p = \/u. We also have

N=-"L"| ETS=1= Cand T 2
1—p 1—p 1—p

Finally

, andW:ﬁ.
p

L=p

t
mww:ﬂzlp
http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MG1Process/MG1Process.html

Table 26. M/G/c processor sharing Queueing System

The Poisson arrival stream has an average arrival rate of X\. The service time distribution
is general with the restriction that its Laplace transform is rational, with the denominator
having degree at least one higher than the numerator. Equivalently, the service time, s,
is Coxian. The priority system is processor-sharing, which works as follows. When the
number of customers in the service center, is less than ¢, then each customers is served
simultaneously by one server; that is, each receives service at the rate u. When N > c.
each customer simultaneously receives service at the rate cu/N. We find that just as for
the M/G/1 processor-sharing system.
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7.17 M/M/c Priority system

Table 27. M/M/c relative priority (HOL) Queueing System

There are n priority classes with each class having a Poisson arrival pattern with mean
arrival rate \;. Each customer has the same exponential service time requirement. Then
the overall arrival pattern is Poisson with mean A\ = A\{+Xy+. ..+ \,,. The server utilization

AS A
G=—=—,
c cp
— Cle, p|S
Wy, = —Clerls
(1 —=XS/e)
and thes equations are also true:
A7 C[Cap]§
W; = = — , J=2,.
6{1_(5 Ai> /C} {1_(sm) /C}
i=1 =1
W;=W;+S5, j=12...,n
Q;=X-W;, j=12,...n
N]:Xj-T], j=12....n
—_/\1 2 )\n
W—X‘i‘y—i- +T
Q=)W
T=W+S
N=\-T

http://irh.inf.unideb.hu/user/jsztrik/education/03/EN/MMcPrio/MMcPrio.html
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